精英家教网 > 高中数学 > 题目详情

在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,任取两点连成直线,所连的直线中与A1BC1平行的直线共有


  1. A.
    12条
  2. B.
    18条
  3. C.
    21条
  4. D.
    24条
D
分析:若两点的连线与平面A1BC1平行,则这些直线一定位于一个与平面A1BC1平行的平面内,将各个顶点与各棱中点共20个点共分成如图的几个平面,则第一平面内共1个点,0条直线,第二个平面内共3个点,3条直线,第三个平面为平面A1BC1,第四个平面有6个点,15条直线,第五平面内共3个点,3条直线,第六个平面内共3个点,3条直线,第七个平面内共1个点,0条直线,由此即可得到答案.
解答:如下图所示:

在正方体ABCD-A1B1C1D1的各个顶点与各棱中点共20个点中,
任取两点连成直线,所连的直线与平面A1BC1平行的直线,
则直线应该在与平面A1BC1平行的平面中
由图可知满足条件的线共有:3+15+3+3=24条
故选D
点评:本题考查的知识点是直线与平面平行的判定,画出满足条件的图形,利用数形结合的思想,解答立体几何问题,是解决空间想像能力不足最好的办法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案