精英家教网 > 高中数学 > 题目详情

已知直线及圆
(1) 若直线l与圆C相切,求a的值;
(2) 若直线l与圆C相交于AB两点,且弦AB的长为,求a的值.

解:圆方程化为(x-1)2+(y-2)2=4……………………1’
∴圆心(1,2),半径为2            …………………2’
(1)由题意有=2,解得a=0或a=.  ……………7’     
(2)∵圆心到直线axy+4=0的距离为,……………9’
22=4,解得a=-.        ………………12’

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

自点发出的光线射到轴上,被轴反射,其反射光线所在直线与圆相切,求光线所在直线的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设平面直角坐标系中,设二次函数的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:
(Ⅰ)求实数b 的取值范围;
(Ⅱ)求圆C 的方程;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且
(1)求椭圆的离心率;
(2)若过三点的圆恰好与直线相切,求椭圆
方程;
(3)在(2)的条件下,过右焦点作斜率为的直线与椭圆交于
点,在轴上是否存在点使得以为邻边的平行四边形是菱形,
如果存在,求出的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图所示,已知以点为圆心的圆与直线相切.过点的动直线与圆相交于两点,的中点,直线相交于点.

(1)求圆的方程;
(2)当时,求直线的方程.
(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线C1为参数),曲线C2(t为参数).
(1)指出C1,C2各是什么曲线,并说明C1与C2公共点的个数;
(2)若把C1,C2上各点的纵坐标都拉伸为原来的两倍,分别得到曲线.写出的参数方程.公共点的个数和C公共点的个数是否相同?说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
过点作圆C的切线,切点为D,且QD=4
(1)求的值
(2)设P是圆C上位于第一象限内的任意一点,过点P作圆C的切线l,且lx轴于点A,交轴于点B,设,求的最小值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.
(1)求实数m的取值范围;
(2)求该圆半径r的取值范围;
(3)求圆心的轨迹方程。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知抛物线的准线与双曲线交于两点,点为抛物线的焦点,若为直角三角形,则双曲线的离心率是(   )

A. B. C.2 D.3 

查看答案和解析>>

同步练习册答案