精英家教网 > 高中数学 > 题目详情
精英家教网选修4-1:几何证明选讲
如图,BA是⊙O的直径,AD是切线,BF、BD是割线,
求证:BE•BF=BC•BD.
分析:证法一做出辅助线,根据两条线平行,同位角相等,得到两个角相等,在根据同弧所对的圆周角等于弦切角,得到两个三角形相似,得到对应边成比例.
证法二,做出辅助线,根据直径所对的圆周角是一个直角,根据射影定理得到AB2=BC•BD,AB2=BE•BF,根据等量代换得到结论.
解答:证明:
证法一:连接CE,过B作⊙O的切线BG,则BG∥AD
∴∠GBC=∠FDB,又∠GBC=∠CEB
∴∠CEB=∠FDB
又∠CBE是△BCE和△BDF的公共角
∴△BCE∽△BDF∴
BC
BF
=
BE
BD

即BE•BF=BC•BD
证法二:连续AC、AE,∵AB是直径,AC是切线
∴AB⊥AD,AC⊥BD,AE⊥BF
由射线定理有AB2=BC•BD,AB2=BE•BF
∴BE•BF=BC•BD
点评:本题考查平面几何的有关证明,是一个基础题,这种题目解题的关键是看清要证明的四条线段之间的位置关系,得到结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网选修4-1:几何证明选讲
如图,圆O的直径AB=10,弦DE⊥AB于点H,HB=2.
(1)求DE的长;
(2)延长ED到P,过P作圆O的切线,切点为C,若PC=2
5
,求PD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A、选修4-1:几何证明选讲 
如图,PA与⊙O相切于点A,D为PA的中点,
过点D引割线交⊙O于B,C两点,求证:∠DPB=∠DCP.
B.选修4-2:矩阵与变换
已知矩阵M=
12
2x
的一个特征值为3,求另一个特征值及其对应的一个特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆C的方程为ρ=2
2
sin(θ+
π
4
)
,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=t
y=1+2t
(t为参数),判断直线l和圆C的位置关系.
D.选修4-5:不等式选讲
求函数y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选修4-1:几何证明选讲
自圆O外一点P引圆的一条切线PA,切点为A,M为PA的中点,过点M引圆O的割线交该圆于B、C两点,且∠BMP=100°,∠BPC=40°,求∠MPB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•徐州模拟)选修4-1:几何证明选讲
如图,直线AB经过圆上O的点C,并且OA=OB,CA=CB,圆O交于直线OB于E,D,连接EC,CD,若tan∠CED=
12
,圆O的半径为3,求OA的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南京二模)选修4-1:几何证明选讲
如图,圆O是等腰三角形ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交圆O于点E,连结BE与AC交于点F,求证:AE2=EF•BE.

查看答案和解析>>

同步练习册答案