精英家教网 > 高中数学 > 题目详情
16.在△ABC中,a=2,c=$\sqrt{6}$,A=45°,则C=60°或120°.

分析 由已知利用正弦定理可求sinC的值,根据大边对大角,特殊角的三角函数值即可得解.

解答 解:在△ABC中,∵a=2,c=$\sqrt{6}$,A=45°,
∴利用正弦定理可得:sinC=$\frac{csinA}{a}$=$\frac{\sqrt{6}×\frac{\sqrt{2}}{2}}{2}$=$\frac{\sqrt{3}}{2}$,
∵a<c,可得:C∈(45°,180°),
∴C=60°或120°.
故答案为:60°或120°.

点评 本题主要考查了正弦定理,大边对大角,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,M是PD上的点,且AB=2,∠BAD=60°.
(1)求证:平面PBD⊥平面PAC;
(2)当OM∥平面PAB且三棱锥M-BCD的体积等于$\frac{{\sqrt{3}}}{4}$时,求点C到面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:?x>0,x2-2x+1>0;命题q:?x0>0,${x}_{0}^{2}$-2x0+1≤0,下列选项真命题的是(  )
A.¬p∧qB.p∧qC.p∨¬qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下的对应数据:
x24568
y3040506070
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)要使这种产品的销售额突破一亿元,则广告费支出至少为多少百万元?(精确到0.1)

附表:$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}}\\{a=\overline{y}-b\overline{x}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.并求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设椭圆$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的右焦点为F,斜率为k(k>0)的直线经过F并且与椭圆相交于点A,B.若5$\overrightarrow{AF}$=3$\overrightarrow{FB}$,则k的值为(  )
A.$\sqrt{3}$B.$\sqrt{5}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的下顶点为P(0,-1),P到焦点的距离为$\sqrt{2}$.
(1)设Q是椭圆上的动点,求|PQ|的最大值;
(2)若直线l与圆O:x2+y2=1相切,并与椭圆C交于不同的两点A、B.当$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,且满足$\frac{2}{3}$≤λ≤$\frac{8}{9}$时,求△AOB面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.为了让学生了解环保,增强环保意识,某中学举行了一次环保知识竞赛,共有900名学生参加了这次竞赛.为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)进行统计.请你根据下面尚未完成的频率分布表和频率分布直方图,解答下列问题:
分组频数频率
[50,60)40.08
[60,70)80.16
[70,80)100.20
[80,90)160.32
[90,100]
合计
(1)填充频率分布表中的空格;
(2)不具体计算$\frac{频率}{组距}$,补全频率分布直方图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数z1,z2在复平面内对应的点关于虚轴对称,且z1=2-i,则复数$\frac{{z}_{1}}{|{z}_{1}{|}^{2}+{z}_{2}}$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案