精英家教网 > 高中数学 > 题目详情
(2011•黄冈模拟)已知{an}是正数组成的数列,a1=1,且点(
an
an+1)(n∈N*)
在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn
分析:(Ⅰ)由题设条件知an+1=an+1,根据等差数列的定义:{an}是首项为1,公差为1的等差数列,从而an=n,根据bn+1=bn+3an(n∈N*),可得bn+1-bn=3n(n∈N*).累加可求和,从而得{bn}的通项公式;
 (II)根据cn=anbncosnπ(n∈N*),可得cn=
-n(3n-3),n为奇数
n(3n-3),n为偶数
,再分n为偶数,奇数分别求和即可
解答:解:(Ⅰ)因为点(
an
an+1
)(n∈N*)在函数y=x2+1的图象上
所以an+1=an+1
根据等差数列的定义:{an}是首项为1,公差为1的等差数列
所以an=n
∵bn+1=bn+3an(n∈N*).
∴bn+1-bn=3n(n∈N*).
bn=3+32+…+3n-1=
1
2
×3n-
3
2

(II)∵cn=anbncosnπ(n∈N*),
cn=
-n(3n-3),n为奇数
n(3n-3),n为偶数

当n为偶数时,Sn=(-3+2•32+…+n•3n)+3[1-2+3-4+…+(n-1)-n]
设Tn=(-3+2•32+…+n•3n),则3Tn=-32+2•33+…+n•3n+1
Tn=
1
16
[-3+(4n+1)•3n+1]

Sn=
(4n+1)•3n+1+24n+21
16

当n为奇数时,Sn=Sn-1+cn=
-(4n+1)•3n+1+24n+21
16

Sn=
-(4n+1)•3n+1+24n+21
16
,n为奇数
(4n+1)•3n+1+24n+21
16
,n为偶数
点评:本题以函数为载体,考查数列的概念和性质及其应用,,考查错位相减法求和,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知:如图|
OA
|=|
OB
|=1,
OA
OB
的夹角为120°,
OC
OA
的夹角为30°,若
OC
OA
OB
(λ,μ∈R)则
λ
μ
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC所在的平面内有一点P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面积与△ABC的面积之比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)分形几何学是美籍法国数学家伯努瓦••B•曼德尔布罗特(Benoit B.Mandelbrot) 在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第10行的空心圆点的个数是(  )

查看答案和解析>>

同步练习册答案