精英家教网 > 高中数学 > 题目详情
(2011•黄冈模拟)分形几何学是美籍法国数学家伯努瓦••B•曼德尔布罗特(Benoit B.Mandelbrot) 在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路.下图按照的分形规律生长成一个树形图,则第10行的空心圆点的个数是(  )
分析:可以看到第三行起每一行空心圆点的个数都是前两行空心圆点个数的和,由此可以得到一个递推关系,利用此递推关系求解即可.
解答:解:由题意及图形知不妨构造这样一个数列{an}表示空间心圆点的个数变化规律,令a1=1,a2=0,n≥3时,an=an-1+an-2,本数列中的n对应着图形中的第n行中空心圆点的个数.由此知a10即所求.
故各行中空心圆点的个数依次为1,0,1,1,2,3,5,8,13,21,34,55,89,..
a10=21,即第10行中空心圆点的个数是21
故选C.
点评:本题主要考查了数列的应用,解题的关键构造这样一个数列{an}表示空间心圆点的个数变化规律,令a1=1,a2=0,n≥3时,an=an-1+an-2,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知:如图|
OA
|=|
OB
|=1,
OA
OB
的夹角为120°,
OC
OA
的夹角为30°,若
OC
OA
OB
(λ,μ∈R)则
λ
μ
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)已知{an}是正数组成的数列,a1=1,且点(
an
an+1)(n∈N*)
在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC所在的平面内有一点P,如果
PA
+
PB
+
PC
=
AB
,那么△PAB的面积与△ABC的面积之比是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•黄冈模拟)在△ABC中,C=60°,AB=
3
,BC=
2
,那么A等于(  )

查看答案和解析>>

同步练习册答案