精英家教网 > 高中数学 > 题目详情
9.设f(α)=sinnα+cosnα,n∈{n|n=2k,k∈N+}
(I)分别求f(α)在n=2,4,6时的值域;
(Ⅱ)根据(I)中的结论,对n=2k,k∈N+时f(α)的取值范围作出一个猜想(只需写出猜想,不必证明).

分析 (Ⅰ)当n=2时,由平方关系求得f(α)=1,得到f(α)的值域为{1};当n=4时,把f(α)变形可得f(α)=$1-\frac{1}{2}si{n}^{2}2α$,得f(α)的值域为[$\frac{1}{2}$,1];当n=6时,f(α)=$1-\frac{3}{4}si{n}^{2}2α$,f(α)的值域为[$\frac{1}{4}$,1].
(Ⅱ)由(Ⅰ)的结论猜想,当n=2k,k∈N*时,$\frac{1}{{2}^{k-1}}≤f(α)≤1$.

解答 解:(Ⅰ)当n=2时,f(α)=sin2α+cos2α=1,∴f(α)的值域为{1};
当n=4时,f(α)=sin4α+cos4α=$(si{n}^{2}α+co{s}^{2}α)^{2}-2si{n}^{2}αco{s}^{2}α=1-\frac{1}{2}si{n}^{2}2α$,
此时有$\frac{1}{2}≤$f(α)≤1,∴f(α)的值域为[$\frac{1}{2}$,1];
当n=6时,f(α)=sin6α+cos6α=(sin2α+cos2α)(sin4α+cos4α-sin2αcos2α)
=$1-3si{n}^{2}αco{s}^{2}α=1-\frac{3}{4}si{n}^{2}2α$,
此时有$\frac{1}{4}≤$f(α)≤1,∴f(α)的值域为[$\frac{1}{4}$,1].
(Ⅱ)由以上结论猜想,当n=2k,k∈N*时,$\frac{1}{{2}^{k-1}}≤f(α)≤1$.

点评 本题考查三角函数最值的求法,考查三角函数的值域,训练了同角三角函数基本关系式的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右顶点分别为A(-2,0),B(2,0),离心率e=$\frac{\sqrt{3}}{2}$.
(1)求椭圆M的方程;
(2)若F1,F2是椭圆M的左,右焦点,以线段F1F2为直径作圆N,点C(C点不同于F1,F2,且不在y轴上)为圆N上任一点,直线F1C与直线x=$\sqrt{3}$交于点R,D为线段RF2的中点,试判断直线CD与圆N的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.下列各式中,正确的序号是②④⑤
①0={0};          
②0∈{0};        
③{1}∈{1,2,3};
④{1,2}⊆{1,2,3};                
⑤{a,b}⊆{a,b}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图示,根据茎叶图解答下列问题;
(1)计算甲班与乙班的身高数据的中位数.
(2)判断哪个班的平均身高较高.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{2x-1}{x+1}$(x>0)的值域为 (  )
A.(-,+∞)B.(-1,2)C.{y|y≠2}D.{y|y>2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其中左焦点F(-2,0).
(1)求椭圆C的方程;
(2)若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M关于直线y=x+1的对称点在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图,在圆锥SO中,其母线长为2,底面半径为$\frac{1}{2}$,一只虫子从底面圆周上一点A出发沿圆锥表面爬行一周后又回到A点,则这只虫子所爬过的最短路程是2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an},an≥0,a1=0,an+12+an+1-1=an2,n∈N*
(1)求证:an<1;
(2)求证:数列{an}递增;
(3)求证:$\frac{1}{1+{a}_{1}}$+$\frac{1}{(1+{a}_{1})(1+{a}_{2})}$+…+$\frac{1}{(1+{a}_{1})(1+{a}_{2})…(1+{a}_{n})}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$对任意实数x都成立,则实数m的取值范围是m≤2.

查看答案和解析>>

同步练习册答案