精英家教网 > 高中数学 > 题目详情
19.不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$对任意实数x都成立,则实数m的取值范围是m≤2.

分析 不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$对任意实数x都成立?(3-m)x2+(2-m)x+(2-m)≥0.对任意实数x都成立,对m分类讨论即可得出.

解答 解:不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$,化为(3-m)x2+(2-m)x+(2-m)≥0.
∵不等式$\frac{3{x}^{2}+2x+2}{{x}^{2}+x+1}≥m$对任意实数x都成立,
∴(3-m)x2+(2-m)x+(2-m)≥0.对任意实数x都成立,
当m=3时,化为x+1≤0,不满足要求,舍去;
当m≠3时,变形满足$\left\{\begin{array}{l}{3-m>0}\\{△=(2-m)^{2}-4(3-m)(2-m)≤0}\end{array}\right.$,解得:m≤2.
故答案为:m≤2.

点评 本题考查了一元二次不等式的解集与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.设f(α)=sinnα+cosnα,n∈{n|n=2k,k∈N+}
(I)分别求f(α)在n=2,4,6时的值域;
(Ⅱ)根据(I)中的结论,对n=2k,k∈N+时f(α)的取值范围作出一个猜想(只需写出猜想,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知α,β∈($\frac{3π}{4}$,π),sin(α+β)=-$\frac{3}{5}$,sin(β-$\frac{π}{4}$)=$\frac{12}{13}$.
(1)求cos(β+$\frac{π}{4}$)的值;
(2)求cos(α+$\frac{π}{4}$)的值;
(3)求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.读程序

对甲乙两程序和输出结果判断正确的是(  )
A.程序不同,结果不同B.程序相同,结果不同
C.程序不同,结果相同D.程序相同,结果相同

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.给出如下一个算法:
第一步:输入x;
第二步:若x>0,则y=2x2-1,否则执行第三步;
第三步:若x=0,则y=1,否则y=2|x|;
第四步:输出y.
(1)画出该算法的程序框图;
(2)若输出y的值为1,求输入实数x的所有可能的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c分别为角A,B,C的对边,已知A=$\frac{π}{4}$,a=$\sqrt{3}$.
(1)若sinB=$\frac{3}{5}$,求边c的长;
(2)若|$\overrightarrow{CA}$+$\overrightarrow{CB}$|=$\sqrt{6}$,求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数f(x)=$(1+x)^{\frac{x}{tan(x-\frac{π}{4})}}$在(0,2π)内的间断点,并判断其类型.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{-2,x∈(-∞,-2)}\\{x+3,x∈[-2,2)}\\{3,x∈[2,+∞)}\end{array}\right.$试作出函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.用斜二侧画法画一个周长为4的矩形的直观图,试求直观图面积的最大值.

查看答案和解析>>

同步练习册答案