精英家教网 > 高中数学 > 题目详情
函数f(x)=2x2+x-1,x∈[-5,5],在定义域内任取一点x0,使f(x0)≤0的概率是
 
考点:几何概型
专题:概率与统计
分析:先解不等式f(x0)≤0,得能使事件f(x0)≤0发生的x0的取值长度为3,再由x0总的可能取值,长度为定义域长度10,得事件f(x0)≤0发生的概率是0.3
解答: 解:∵f(x)≤0?2x2+x-1≤0?-1≤x≤0.5,
∴f(x0)≤0?-1≤x0≤0.5,即x0∈[-1,0.5],
∵在定义域内任取一点x0
∴x0∈[-5,5],
∴使f(x0)≤0的概率P=
1.5
10
=
3
20

故答案为:
3
20
点评:本题考查了几何概型的意义和求法,将几何概率转化为长度、面积、体积等之比,是解决问题的关键
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知两条相交直线a、b,a∥平面α,则b与平面α的位置关系(  )
A、b∥α
B、b与α相交
C、b?α
D、b∥α或b与α相交

查看答案和解析>>

科目:高中数学 来源: 题型:

某校高一级数学必修一模块考试的成绩分为四个等级,85分-100分为A等,70分-84分为B等,55分-69分为C等,54分以下为D等.右边的茎叶图(十位为茎,个位为叶)记录了某班某小组6名学生的数学必修一模块考试成绩.
(1)求出茎叶图中这6个数据的中位数和平均数;
(2)若从这6名学生中随机抽出2名,分别求恰好有一名学生的成绩达到A等的概率和至多有一名学生的成绩达到A等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sin(-2x)的一个单调增区间是(  )
A、[-
π
4
π
4
]
B、[-
π
2
π
2
]
C、[-
2
,-
π
2
]
D、[-
4
,-
π
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(3x+φ)(A>0,x∈R,0<φ<π)在x=
π
12
时取得最大值4.
(1)求f(x)的解析式;
(2)若f(
2
3
α+
π
12
)=
12
5
,求sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+2x+a,对于满足x1<x2且x1+x2=1-a的任意实数x1与x2,总有f(x1)<f(x2)成立,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x-kxa-2(k,a∈R)的图象经过点(1,0),设g(x)=
f(x),x≤0
log2(x+1),x>0
,若g(t)=2,则实数t=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+ax+b(a,b∈R)的值域为(-∞,0],若关于x的不等式f(x)>c-1的解集为(m-4,m+1),则实数c的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=sinx-cos(x+
π
6
)的单调递增区间为(  )
A、[2kπ-
6
,2kπ-
π
6
](k∈Z)
B、[2kπ-
π
6
,2kπ+
6
](k∈Z)
C、[2kπ-
3
,2kπ-
π
3
](k∈Z)
D、[2kπ-
π
3
,2kπ+
3
](k∈Z)

查看答案和解析>>

同步练习册答案