精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2cos2x+2
3
sinxcosx(x∈R).
(Ⅰ)当x∈[0,
π
2
]时,求函数f(x)的单调递增区间;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=3,f(C)=2,若向量
m
=(1,sinA)与向量
n
=(2,sinB)共线,求a,b的值.
考点:正弦定理,平面向量共线(平行)的坐标表示,平面向量数量积的运算
专题:解三角形
分析:(I)利用三角函数的恒等变换化简f(x)的解析式为2sin(2x+
π
6
)+1
.令-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ
,k∈z,求得x的范围,结合x∈[0,
π
2
]
,可得f(x)的递增区间.
(Ⅱ)由f(C)=2,求得sin(2C+
π
6
)=
1
2
,结合C的范围求得C的值.根据向量
m
=(1,sinA)与向量
n
=(2,sinB)共线,可得
sinA
sinB
=
1
2
,故有
a
b
=
1
2
 ①,再由余弦定理得9=a2+b2-ab ②,由①②求得a、b的值.
解答: 解:(I)∵f(x)=2cos2x+
3
sin2x
=cos2x+
3
sin2x+1
=2sin(2x+
π
6
)+1

-
π
2
+2kπ≤2x+
π
6
π
2
+2kπ,k∈Z

解得2kπ-
3
≤2x≤2kπ+
π
3
,即kπ-
π
3
≤x≤kπ+
π
6

x∈[0,
π
2
]
,∴f(x)的递增区间为[0,
π
6
]

(Ⅱ)由f(C)=2sin(2C+
π
6
)+1=2
,得sin(2C+
π
6
)=
1
2

而C∈(0,π),∴2C+
π
6
∈(
π
6
13π
6
)
,∴2C+
π
6
=
5
6
π
,可得C=
π
3

∵向量向量
m
=(1,sinA)与向量
n
=(2,sinB)共线,∴
sinA
sinB
=
1
2

由正弦定理得:
a
b
=
1
2
 ①.
由余弦定理得:c2=a2+b2-2ab•cosC,即9=a2+b2-ab ②,
由①、②解得a=
3
,b=2
3
点评:本题主要考查三角函数的恒等变换,正弦函数的增区间,正弦定理、余弦定理的应用,两个向量共线的性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某班优秀生16人,中等生24人,学困生8人,现采用分层抽样的方法从这些学生中抽取6名学生做学习习惯调查,
(Ⅰ)求应从优秀生、中等生、学困生中分别抽取的学生人数;
(Ⅱ)若从抽取的6名学生中随机抽取2名学生做进一步数据分析,
(1)列出所有可能的抽取结果;
(2)求抽取的2名学生均为中等生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=x+
1-x2
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

以直角坐标系的原点为极点,x轴非负半轴为极轴,在两种坐标系中取相同单位的长度.已知直线l的方程为
ρcosθ-ρsinθ-1=0(ρ>0),曲线C的参数方程为
x=2cosα
y=2+2sinα
(α为参数),点M是曲线C上的一动点.
(Ⅰ)求线段OM的中点P的轨迹方程;
(Ⅱ)求曲线C上的点到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+3在区间[-1,1]上有最小值,记作g(a).
(1)求g(a)的函数表达式;
(2)作出g(a)的函数图象并指出它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,输出的S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设l,m是两条不同的直线,α,β是两个不同的平面,有下列命题:
①l∥m,m?α,则l∥α;
②l∥α,m∥α则l∥m;
③α⊥β,l?α,则l⊥β;
④l⊥α,m⊥α,则l∥m.
其中正确的命题的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①函数y=cos(x-
π
2
)
是奇函数;
②若α、β是第一象限角,且α<β,则tanα<tanβ;
③将函数y=3sin(2x+
π
3
)
的图象向右平移
π
3
个单位长度得到y=3sin2x;
④若x∈(0,
π
2
)
,则函数y=3sin(2x+
π
3
)
的值域为(-
3
3
2
,3]

则其中正确命题序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:
(1)函数y=
1
x
+x(x<0)
的值域是(-∞,-2];
(2)函数y=x2+2+
1
x2+2
最小值是2;
(3)若a,b同号且a≠b,则
a
b
+
b
a
>2

其中正确的命题是(  )
A、(1)(2)(3)
B、(1)(2)
C、(2)(3)
D、(1)(3)

查看答案和解析>>

同步练习册答案