【题目】已知直线
是曲线
的切线.
(1)求函数
的解析式,
(2)若
,证明:对于任意
,
有且仅有一个零点.
【答案】(1)
(2)证明见解析
【解析】
(1)对函数求导,并设切点
,利用点既在曲线上、又在切线上,列出方程组,解得
,即可得答案;
(2)当x充分小时
,当x充分大时
,可得
至少有一个零点. 再证明零点的唯一性,即对函数求导得
,对
分
和
两种情况讨论,即可得答案.
(1)根据题意,
,设直线
与曲线
相切于点
.
根据题意,可得
,解之得
,
所以
.
(2)由(1)可知
,
则当x充分小时
,当x充分大时
,∴
至少有一个零点.
∵
,
①若
,则
,
在
上单调递增,∴
有唯一零点.
②若
令
,得
有两个极值点,
∵
,∴
,∴
.
∴
在
上单调递增,在
上单调递减,在
上单调递增.
∴极大值为
.
,又
,
∴
在(0,16)上单调递增,
∴
,
∴
有唯一零点.
综上可知,对于任意
,
有且仅有一个零点.
科目:高中数学 来源: 题型:
【题目】某公司欲对员工饮食习惯进行一次调查,从某科室的100人中的饮食结构调查结果统计如下表.
主食蔬菜 | 主食肉类 | 总计 | |
不超过45岁 | 15 | 40 | |
45岁以上 | 20 | ||
总计 |
(1)完成
列联表,并判断能否有99%的把握认为员工的饮食习惯与年龄有关?
(2)在45岁以上员工中按照饮食习惯进行分层抽样抽出一个容量为6的样本,从这6个人中随机抽取3个人,求这3个人都主食蔬菜的概率.
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0(a>0),命题q:实数x满足x2﹣5x+6<0.
(1)若a=1,且p∧q为真命题,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“随机模拟方法”计算曲线
与直线
所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数xi和10个在区间[0,1]上的均匀随机数![]()
,其数据如下表的前两行.
x | 2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 |
y | 0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 |
lnx | 0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得这个曲边三角形面积的一个近似值为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,以下结论正确的个数为( )
①当
时,函数
的图象的对称中心为
;
②当
时,函数
在
上为单调递减函数;
③若函数
在
上不单调,则
;
④当
时,
在
上的最大值为15.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C的参数方程为
(α为参数,直线l:y=kx(k>0),以O为极点,x轴正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求|OA||OB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,左、右焦点分别是
,椭圆
上短轴的一个端点与两个焦点构成的三角形的面积为
;
(1)求椭圆
的方程;
(2)过
作垂直于
轴的直线
交椭圆
于
两点(点
在第二象限),
是椭圆上位于直线
两侧的动点,若
,求证:直线
的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一批用于手电筒的电池,每节电池的寿命服从正态分布
(寿命单位:小时).考虑到生产成本,电池使用寿命在
内是合格产品.
(1)求一节电池是合格产品的概率(结果四舍五入,保留一位小数);
(2)根据(1)中的数据结果,若质检部门检查4节电池,记抽查电池合格的数量为
,求随机变量
的分布列、数学期望及方差.
附:若随机变量
服从正态分布
,则
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com