精英家教网 > 高中数学 > 题目详情
已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1
和双曲线
x2
3
-y2=1
,P是它们的一个交点,则△F1PF2的形状是(  )
A、锐角三角形
B、B直角三角形
C、钝有三角形
D、等腰三角形
分析:由题设中的条件,设两个圆锥曲线的焦距为2c,椭圆的长轴长2
5
,双曲线的实轴长为2
3
,不妨令P在双曲线的右支上,根据椭圆和双曲线的性质以及勾股定理即可得到结论.
解答:解:由题意设两个圆锥曲线的焦距为2c,椭圆的长轴长2
5
,双曲线的实轴长为2
3
,不
妨令P在双曲线的右支上,由双曲线的定义|PF1|-|PF2|=2
3
  ①
由椭圆的定义|PF1|+|PF2|=2
5
  ②
2+②2得|PF1|2+|PF2|2=4
又|F1F2|=4,
∴|PF1|2+|PF2|2=|F1F2|,
则△F1PF2的形状是直角三角形
故选B.
点评:本题考查圆锥曲线的共同特征,考查通过椭圆与双曲线的定义求焦点三角形三边长,解决本题的关键是根据所得出的条件灵活变形,求出焦点三角形的边长来.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•长宁区二模)已知有相同两焦点F1、F2的椭圆
x2
m
+y2=1(m>1)
和双曲线
x2
n
-y2=1(n>0)
,P是它们的一个交点,则△F1PF2的形状是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
5
+y2=1和双曲线
x2
3
-y2=1,P是它们的一个交点,则△F1PF2的面积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有相同两焦点F1、F2的椭圆
x2
m
+y2=1(m>1)
和双曲线
x2
n
-y2=1(n>0)
,点P是它们的一个交点,则△F1PF2面积的大小是(  )

查看答案和解析>>

科目:高中数学 来源:2011-2012学年吉林省高三上学期期末质量检测数学 题型:选择题

(理)已知有相同两焦点F1、F2的椭圆 + y2=1(m>1)和双曲线 - y2=1(n>0),P是它们的一个交点,则ΔF1PF2的形状是(    )

A.锐角三角形     B.直角三角形     C.钝有三角形    D.随m、n变化而变化

 

查看答案和解析>>

同步练习册答案