某商家推出一款简单电子游戏,弹射一次可以将三个相同的小球随机弹到一个正六边形的顶点与中心共七个点中的三个位置上(如图),用S表示这三个球为顶点的三角形的面积.规定:当三球共线时,S=0;当S最大时,中一等奖,当S最小时,中二等奖,其余情况不中奖,一次游戏只能弹射一次.
(1)求甲一次游戏中能中奖的概率;
(2)设这个正六边形的面积是6,求一次游戏中随机变量S的分布列及期望值.
(1);(2)S的可能值为:0,1,2,3,其分布列为
.S 0 1 2 3 P
解析试题分析:(1)由题意可知,这是随机变量的等可能事件的概率问题,弹射一次可以将三个相同的小球随机弹到一个正六边形的顶点与中心共七个点中的三个位置上共有种方法,当S最大时它的方法数有种,当S最小时,即共有种方法,一次游戏中能中奖的方法数有种,由古典概率求法可得甲一次游戏中能中奖的概率;(2)设这个正六边形的面积是6,一次游戏中随机变量S的可能值为:0,1,2,3,分别求出它们的概率,得分布列,进而可求得期望值.
试题解析:(1)甲中奖的概率为
(2)S的可能值为:0,1,2,3,其分布列为S 0 1 2 3 P
考点:古典概率,分布列及期望值.
科目:高中数学 来源: 题型:解答题
设A,B是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的只数多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为,服用B有效的概率为.
(1)求一个试验组为甲类组的概率;
(2)观察三个试验组,用X表示这三个试验组中甲类组的个数,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司研制出一种新型药品,为测试该药品的有效性,公司选定个药品样本分成三组,测试结果如下表:
分组 | 组 | 组 | 组 |
药品有效 | |||
药品无效 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
以下茎叶图记录了甲、乙两组各三名同学在期末考试中的数学成绩.乙组记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示.
(Ⅰ)若甲、乙两个小组的数学平均成绩相同,求的值;
(Ⅱ)求乙组平均成绩超过甲组平均成绩的概率;
(Ⅲ)当时,分别从甲、乙两组中各随机选取一名同学,记这两名同学数学成绩之差的绝对值为,求随机变量的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某足球俱乐部2013年10月份安排4次体能测试,规定:按顺序测试,一旦测试合格就不必参加以后的测试,否则4次测试都要参加。若运动员小李4次测试每次合格的概率组成一个公差为的等差数列,他第一次测试合格的概率不超过,且他直到第二次测试才合格的概率为。
(Ⅰ)求小李第一次参加测试就合格的概率P1;
(2)求小李10月份参加测试的次数x的分布列和数学期望。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在一次抢险救灾中,某救援队的50名队员被分别分派到四个不同的区域参加救援工作,其分布的情况如下表,从这50名队员中随机抽出2人去完成一项特殊任务.
区域 | A | B | C | D |
人数 | 20 | 10 | 5 | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
成都七中为绿化环境,移栽了银杏树2棵,梧桐树3棵。它们移栽后的成活率分别为且每棵树是否存活互不影响,求移栽的5棵树中:
(1)银杏树都成活且梧桐树成活2棵的概率;
(2)成活的棵树的分布列与期望.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(14分)如图所示,机器人海宝按照以下程序运行
1从A出发到达点B或C或D,到达点B、C、D之一就停止;
②每次只向右或向下按路线运行;
③在每个路口向下的概率;
④到达P时只向下,到达Q点只向右.
(1)求海宝过点从A经过M到点B的概率,求海宝过点从A经过N到点C的概率;
(2)记海宝到点B、C、D的事件分别记为X=1,X=2,X=3,求随机变量X的分布列及期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com