精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)当数学公式时,讨论f(x)的单调性;
(2)设g(x)=x2-2bx+4,当数学公式,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)+g(x2)≤0,求实数b的取值范围.

解:(1).(2分)
①当,即时,此时f(x)的单调性如下:
x(0,1)1(1,
f′(x)+0_0+
f(x)
(4分)
②当a=0时,,当0<x<1时f(x)递增;
当x>1时,f(x)递减;(5分)
③当a<0时,,当0<x<1时f(x)递增;
当x>1时,f(x)递减;(6分)
综上,当a≤0时,f(x)在(0,1)上是增函数,在(1,+∞)上是减函数;
时,f(x)在(0,1),()上是增函数,
在(1,)上是减函数.(7分)
(2)由(1)知,当时,f(x)在(0,1)上是增函数,在(1,2)上是减函数.
于是x1∈(0,2)时,.(8分)
从而存在x2∈[1,2],
使g(x2)=(10分)
考察g(x)=x2-2bx+4=(x-b)2+4-b2,x∈[1,2]的最小值.
①当b≤1时,g(x)在[1,2]上递增,[g(x)]min=(舍去)..(11分)
②当b≥2时,,g(x)在[1,2]上递减,
..(12分)
③当1<b<2时,,无解.(13分)
综上(14分)
分析:(1)先对函数y=f(x)进行求导,然后令导函数大于0(或小于0)求出x的范围,根据f′(x)>0求得的区间是单调增区间,f′(x)<0求得的区间是单调减区间,即可得到答案.
(2)由(1)知,当时,f(x)在(0,1)上是增函数,在(1,2)上是减函数.于是x1∈(0,2)时,从而存在x2∈[1,2],使g(x2)=x22-2bx2+4,且下面考查g(x)=x2-2bx+4=(x-b)2+4-b2,x∈[1,2]的最小值.对字母b进行分类讨论:①当b≤1时,②当b≥2时,③当1<b<2时,即可求得实数b的取值范围.
点评:本题主要考查导数在最大值、最小值问题中的应用及导函数的正负与原函数的单调性之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

(1)当时,若,试求

(2)若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高考压轴卷文科数学试卷(解析版) 题型:解答题

(本小题满分10分)选修4-5:不等式选讲

已知函数

(1)当时,求函数的定义域;

(2)若关于的不等式的解集是,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期期中文科数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)当时,判断的单调性;

(2)若在其定义域内为增函数,求正实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市宝山区高三上学期期末质量监测数学 题型:解答题

已知函数

    (1)当时,求满足的取值范围;

    (2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题

((本小题满分14分)

已知函数

(1)当时,如果函数仅有一个零点,求实数的取值范围;

(2)当时,试比较的大小;

(3)求证:).

 

查看答案和解析>>

同步练习册答案