精英家教网 > 高中数学 > 题目详情
5.函数y=|x|-2的图象是(  )
A.B.C.D.

分析 判断函数的奇偶性,排除选项,然后利用特殊值判断即可.

解答 解:函数y=|x|-2是偶函数,排除A,B,当x=0时,y=-2,排除D,
故选:C.

点评 本题考查函数的图象的画法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若O为坐标原点,直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别交于A、B两点,直线OA的斜率为-1,则该双曲线的渐近线的斜率为(  )
A.±$\frac{\sqrt{5}}{2}$B.±$\frac{3}{2}$C.±$\frac{\sqrt{30}}{5}$D.±$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在三棱锥V-ABC中,平面VAV⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=$\sqrt{2}$,O,M分别AB,VA的中点.
(Ⅰ)求证:VB∥平面 M OC;
(Ⅱ)求三棱锥V-A BC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.化简$\frac{cos2α}{{4{{sin}^2}(\frac{π}{4}+α)tan(\frac{π}{4}-α)}}$=(  )
A.cosαB.sinαC.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知各项为正数的数列{an}的前n项和Sn满足:Sn>1,6Sn=(an+1)(an+2)(n∈N*
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{a{{\;}_{2}a}_{3}}$+…+$\frac{1}{a{{\;}_{n}a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,E,F分别是三棱柱ABC-A1B1C1的棱AC,A1C1的中点,证明:平面AB1F∥平面BC1E.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,将正方形ABCD沿对角线AC折成一个直二面角,则异面直线AB和CD所成的角是(  )
 
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=sin(\frac{π}{3}x+φ)(|φ|<\frac{π}{2})$的图象关于直线x=1对称,把f(x)的图象向右平移3个单位长度后,所得图象对应的函数解析式为(  )
A.y=sin($\frac{π}{3}$x+$\frac{π}{6}$)B.y=sin($\frac{π}{3}$x-$\frac{π}{6}$)C.y=cos($\frac{π}{3}$x+$\frac{π}{6}$)D.y=sin($\frac{π}{3}$x-$\frac{5π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制出频率分布直方图,如图所示.
(Ⅰ)求频率分布直方图中a的值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;
(Ⅱ)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;
(Ⅲ)试估计样本的中位数与平均数.
(注:将频率视为相应的概率)

查看答案和解析>>

同步练习册答案