精英家教网 > 高中数学 > 题目详情
5.两圆的极坐标方程分别为:ρ=-2cosθ,ρ=2sinθ,则它们公共部分的面积是(  )
A.π-2B.$\frac{π}{2}$C.$\frac{π}{4}$-$\frac{1}{2}$D.$\frac{π}{2}$-1

分析 联立$\left\{\begin{array}{l}{ρ=-2cosθ}\\{ρ=2sinθ}\end{array}\right.$,可得tanθ=-1,解得θ,可得ρ=$\sqrt{2}$.即可得出它们公共部分的面积.

解答 解:联立$\left\{\begin{array}{l}{ρ=-2cosθ}\\{ρ=2sinθ}\end{array}\right.$,可得tanθ=-1,解得θ=$\frac{3π}{4}$.
∴ρ=2sin$\frac{3π}{4}$=$\sqrt{2}$.
∴它们公共部分的面积S=2×($\frac{1}{4}$×π×12-$\frac{1}{2}×{1}^{2}$)=$\frac{π}{2}$-1.
故选:D.

点评 本题考查了极坐标方程的应用、扇形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.平面直角坐标系xOy中,曲线C上的动点M到点F(1,0)的距离比它到直线x=-2的距离小1.
(1)求曲线C的方程;
(2)设P为曲线C上一点,曲线C在点P处的切线交y轴于点A,若△PAF外接圆面积为4π,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)在犯错误的概率不超过0.10的前提下,认为休闲方式与性别是否有关?
参考数据:独立性检验临界值表
p(K2≥k0 0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex(sinx+$\frac{3a-6}{4}$-ax2),其中a∈R.
(1)如果a=0,当x∈[0,π]时,求f(x)的取值范围;
(2)如果$\frac{1}{2}$≤a≤1,求证:对任意的x∈[0,+∞),恒有f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.有甲、乙两个班级进行数学考试,按照大于或等于90分为优秀,90分以下为非优秀统计成绩后,得到如表的列联表.
优秀非优秀总计
甲班10
乙班30
合计100
已知在全部100人中抽到随机抽取1人为优秀的概率为$\frac{3}{10}$.
(1)请完成如表的列联表;
(2)根据列联表的数据,有多大的把握认为“成绩与班级有关系“?
(3)按分层抽样的方法,从优秀学生中抽出6名组成一个样本,再从样本中抽出2名学生,求恰好有1个学生在甲班的概率.
参考公式和数据:K2=$\frac{n(ad-bc)^{2}}{(a+c)(b+d)(a+b)(c+d)}$,其中n=a+b+c+d.
下面的临界值表供参考:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若方程x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,则$\frac{b-2}{a+2}$的取值范围是(  )
A.[-2,1)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx,g(x)=ex,e=2.718….
(Ⅰ)确定方程f(x)=$\frac{x+1}{x-1}$的实根个数;
(Ⅱ)我们把与两条曲线都相切的直线叫做这两条曲线的公切线.问:曲线f(x)与g(x)是否存在公切线?若存在,确定公切线的条数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x)是周期为4的奇函数,当0≤x≤1时,f(x)=2x(1-x),则f(2015.5)=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知tanα=-$\frac{4}{3}$.
(1)求tan(α+$\frac{π}{4}$)的值;   
(2)求$\frac{{{{cos}^2}α+sin2α}}{1+cos2α}$的值.

查看答案和解析>>

同步练习册答案