精英家教网 > 高中数学 > 题目详情
16.在对人们休闲方式的一次调查中,共调查120人,其中女性70人、男性50人,女性中有40人主要的休闲方式是看电视,另外30人主要的休闲方式是运动;男性中有20人主要的休闲方式是看电视,另外30人主要的休闲方式是运动.
(Ⅰ)根据以上数据建立一个2×2的列联表;
(Ⅱ)在犯错误的概率不超过0.10的前提下,认为休闲方式与性别是否有关?
参考数据:独立性检验临界值表
p(K2≥k0 0.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

分析 根据条件建立一个2×2的列联表,求得K2的观测值k,再根据k的范围,得出结论.

解答 解:根据条件建立一个2×2的列联表:

休闲方式看电视休闲方式运动总计
女性403070
男性203050
总计6060120
经计算K2的观测值k=$\frac{120×(40×30-20×3{0)}^{2}}{70×50×60×60}$=$\frac{24}{7}$≈3.429,
而2.706<3.429<3.841,所以,在犯错误的概率不超过0.10的前提下,认为休闲方式与性别有关.

点评 本题主要考查独立性检验的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=a(x-x1)(x-x2)(x-x3)(其中x1>x2>x3,a>0),g(x)=4x+sin(3x+1).若函数f(x)的两个极值点为α、β(β<α),设λ=$\frac{{x}_{1}+{x}_{2}}{2}$,μ=$\frac{{x}_{2}+{x}_{3}}{2}$,则(  )
A.g(β)<g(μ)<g(α)<g(λ)B.g(μ)<g(β)<g(λ)<g(α)C.g(α)<g(λ)<g(μ)<g(β)D.g(β)<g(μ)<g(λ)<g(α)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=mex-x-2.(其中e为自然对数的底数).
(Ⅰ)若曲线y=f(x)过点P(0,1),求曲线f(x)在点P(0,1)处的切线方程;
(Ⅱ)若f(x)>0在R上恒成立,求m的取值范围;
(Ⅲ)若f(x)的两个零点为x1,x2,且x1<x2,求$y=({e^{x_2}}-{e^{x_1}})(\frac{1}{{{e^{x_2}}+{e^{x_1}}}}-m)$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=(x2-x-$\frac{1}{a}$)eax(a≠0).
(Ⅰ)当a=$\frac{1}{2}$时,求函数f(x)的零点;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)当a>0时,若f(x)+$\frac{2}{a}$≥0对x∈R恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|x-1|-|x+1|.
(1)求不等式|f(x)|<1的解集;
(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x、y满足$\frac{{x}^{2}}{3}$+y2=1,则u=|2x+y-4|+|3-x-2y|的取值范围为(  )
A.[1,12]B.[0,6]C.[0,12]D.[1,13]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=aln(x+1)-b(x+1)2图象上点P(1,f(1))处的切线方程为y=-3x+2ln2-1.
(1)求a,b的值,并判断f(x)的单调性;
(2)若方程f(x)-t=0在[${\frac{1}{e}$-1,e-1]内有两个不等实数根,求实数t的取值范围(其中e为自然对数的底数,e=2.71828…);
(3)设g(x)=-2x2+x+m-1,若对任意的x∈(-1,2),f(x)≤g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.两圆的极坐标方程分别为:ρ=-2cosθ,ρ=2sinθ,则它们公共部分的面积是(  )
A.π-2B.$\frac{π}{2}$C.$\frac{π}{4}$-$\frac{1}{2}$D.$\frac{π}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解下列不等式:
(1)42x-22+2x+3<3;
(2)log(x-1)(x2-5x+10)>2.

查看答案和解析>>

同步练习册答案