精英家教网 > 高中数学 > 题目详情
10.若方程x2+ax+2b=0的一个根在(0,1)内,另一个根在(1,2)内,则$\frac{b-2}{a+2}$的取值范围是(  )
A.[-2,1)B.(-2,1)C.(-∞,-2)∪(1,+∞)D.(-∞,-2]∪[1,+∞)

分析 设f(x)=x2+ax+2b,根据二次函数的性质与零点存在性定理可得f(0)>0、f(1)<0且f(2)>0.由此建立关于a、b的二元一次不等式组,设点E(a,b)为区域内的任意一点,根据直线的斜率公式可得k=$\frac{b-2}{a+2}$表示D、E连线的斜率,将点E在区域内运动并观察直线的倾斜角的变化,即可算出k的取值范围.

解答 解:设f(x)=x2+ax+2b,
∵方程x2+ax+2b=0的一个根在区间(0,1)内,另一个根在区间(1,2)内,
∴可得$\left\{\begin{array}{l}{f(0)=2b>0}\\{f(1)=1+a+2b<0}\\{f(2)=4+2a+2b>0}\end{array}\right.$.
作出满足上述不等式组对应的点(a,b)所在的平面区域,
得到△ABC及其内部,即如图所示的阴影部分(不含边界).
其中A(-3,1),B(-2,0),C(-1,0),
设点E(a,b)为区域内的任意一点,
则k=$\frac{b-2}{a+2}$,表示点E(a,b)与点D(-2,2)连线的斜率.
∵KAD=1,kCD=-2,结合图形可知:KAD<k<KCD
∴k的取值范围是(-2,1),
故选:B.

点评 本题着重考查了二次函数的性质、零点存在性定理、二元一次不等式组表示的平面区域、直线的斜率公式与两点间的距离公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,设倾斜角为α的直线:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=\sqrt{3}+tsinα}\end{array}\right.$(t为参数)与曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)相交于不同的两点A,B.
(1)若α=$\frac{π}{3}$,求线段AB的长度;
(2)若直线的斜率为$\frac{\sqrt{5}}{4}$,且有已知点P(2,$\sqrt{3}$),求证:|PA|•|PB|=|OP|2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x、y满足$\frac{{x}^{2}}{3}$+y2=1,则u=|2x+y-4|+|3-x-2y|的取值范围为(  )
A.[1,12]B.[0,6]C.[0,12]D.[1,13]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=|x-2|+|x+a|(a∈R).
(1)若a=1时,求不等式f(x)≥4的解集;
(2)若不等式f(x)≤2x的解集为[1,+∞),求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.两圆的极坐标方程分别为:ρ=-2cosθ,ρ=2sinθ,则它们公共部分的面积是(  )
A.π-2B.$\frac{π}{2}$C.$\frac{π}{4}$-$\frac{1}{2}$D.$\frac{π}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l的参数方程是$\left\{\begin{array}{l}{x=-\frac{12}{13}t}\\{y=\frac{5}{13}t-3}\end{array}\right.$(t为参数),曲线C的极坐标方程是ρ=-2cosθ.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)设直线l与y轴的交点是M,N是曲线C上一动点,求|MN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C的半径为3,圆心在直线2x+y=0上且在x轴下方,x轴被圆C截得的弦长为2$\sqrt{5}$.
(Ⅰ)求圆C的方程;
(Ⅱ)是否存在过定点为P(0,-3)的直线l,使得以l被圆截得的弦为直径的圆过原点?若存在,求出l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{a{x^2}+x+b}}{x^2}$的单调递减区间为(-∞,0)和(0,+∞).
(1)求实数b的值;
(2)当x>0时,有$\frac{1}{f(x)}$+f(ex)≥a+1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知与圆C:x2+y2-2x-2y+1=0相切的直线l分别交x轴和y轴正轴于A,B两点,O为原点,且|OA|=a,|OB|=b(a>2,b>2).求证:
(1)(a-2)(b-2)=2;
(2)求△AOB面积的最小值.

查看答案和解析>>

同步练习册答案