精英家教网 > 高中数学 > 题目详情
2.如图,AB与圆O相切于点B,CD为圆O上两点,延长AD交圆O于点E,BF∥CD且交ED于点F
(I)证明:△BCE∽△FDB;
(Ⅱ)若BE为圆O的直径,∠EBF=∠CBD,BF=2,求AD•ED.

分析 (Ⅰ)根据BF∥CD便有∠EDC=∠BFD,再根据同一条弦所对的圆周角相等即可得出∠EBC=∠BFD,∠BCE=∠BDF,这样即可得出:△BCE与△FDB相似;
(Ⅱ)根据条件便可得出∠EBC=∠FBD,再由上面即可得出∠FBD=∠BFD,这样即可得出△FDB为等腰直角三角形,从而可求出BD=$\sqrt{2}$,根据射影定理即可求出AD•ED的值.

解答 解:
(Ⅰ)证明:∵BF∥CD;
∴∠EDC=∠BFD,
又∠EBC=∠EDC,
∴∠EBC=∠BFD,
又∠BCE=∠BDF,
∴△BCE∽△FDB.
(Ⅱ)因为∠EBF=∠CBD,所以∠EBC=∠FBD,
由(Ⅰ)得∠EBC=∠BFD,所以∠FBD=∠BFD,
又因为BE为圆O的直径,
所以△FDB为等腰直角三角形,BD=$\frac{\sqrt{2}}{2}$BF=$\sqrt{2}$,
因为AB与圆O相切于B,所以EB⊥AB,即AD•ED=BD2=2.

点评 考查内错角相等,同条弦所对的圆周角相等,以及三角形相似的判定定理,直径所对的圆周角为直角,以及射影定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P点处的切线斜率为2
(1)求a,b的值;
(2)设函数g(x)=f(x)-2x+2,求g(x)在其定义域上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α,β均为锐角,且cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,则sinβ的值为(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2\sqrt{5}}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.集合A={(x,y)|y=3x-2},B={(x,y)|y=x+4},则A∩B=(  )
A.{3,7}B.{(3,7)}C.(3,7)D.[3,7]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=$\sqrt{3}$,($\overrightarrow{a}$+$\overrightarrow{b}$)•($\overrightarrow{a}$-2$\overrightarrow{b}$)=16.
(1)求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)求|$\overrightarrow{a}$+$\overrightarrow{b}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=-2”是“函数f(x)=x2+ax+1(x∈R)只有一个零点”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,长方体ABCD-A1B1C1D1中,AB=2,BC=CC1=1,点P是CD上的一点,PC=λPD.
(Ⅰ)若A1C⊥平面PBC1,求λ的值;
(Ⅱ)设λ1=1,λ2=3所对应的点P为P1,P2,二面角P1-BC1-P2的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求下列方程的解集:
(1)3sin2x+2sinx-1=0
(2)2sin2x+3cosx=0
(3)cos2x=3cosx+1
(4)3(1-sinx)=cos2x+1
(5)sinx-sin$\frac{x}{2}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知某三棱锥的三视图(单位:cm)如图所示,那么该三棱锥的体积等于(  )
A.$\frac{3}{2}$B.2C.3D.9

查看答案和解析>>

同步练习册答案