精英家教网 > 高中数学 > 题目详情
7.“a=-2”是“函数f(x)=x2+ax+1(x∈R)只有一个零点”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

分析 此题是充分性,必要性的判定可先令a=-2看能不能得出函数f(x)=x2+ax+1只有一个零点,若能得出充分性成立否则不成立;然后看函数f(x)=x2+ax+1只有一个零点能不能得出a=-2,若能得出则必要性成立否则不成立.

解答 解:若a=-2,则函数f(x)=x2-2x+1,令f(x)=0,则(x-1)2=0,故x=1,
所以当a=-2函数f(x)=x2+ax+1只有一个零点1,
 即“a=-2”是“函数f(x)=x2+ax+1只有一个零点”的充分条件;
若函数f(x)=x2+ax+1只有一个零点,即函数f(x)的图象与x轴只有一个交点,也即f(x)=0有且只有一个实根,所以△=a2-4=0,所以a=±2,
所以“a=-2”不是“函数f(x)=x2+ax+1只有一个零点”的必要条件.
故选:A.

点评 本题主要考查了必要条件,充分条件,充要条件的判定,属常考题型.解题的策略是先看前者能不能推出后者再看后者能不能推出后者然后再利用充分性、必要性的定义得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设圆x2+y2-2x-15=0的圆心为F1,直线l过点F2(-1,0)且交圆F1于P,Q两点,线段PF2的垂直平分线交线段PF1于M点.
(1)证明|MF1|+|MF2|为定值,并写出点M的轨迹方程;
(2)设点M的轨迹为T,T与x轴交点为A,B,直线l与T交于C,D两点,记△ABD与△ABC的面积分别为S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,矩形ABCD中,AB=4,AD=2,点P为BC的中点,且$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$(λ∈R).
(Ⅰ)试用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示$\overrightarrow{AP}$;
(Ⅱ)若$\overrightarrow{AQ}$•$\overrightarrow{DC}$=4时,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图程序运行后输出的结果是61.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,AB与圆O相切于点B,CD为圆O上两点,延长AD交圆O于点E,BF∥CD且交ED于点F
(I)证明:△BCE∽△FDB;
(Ⅱ)若BE为圆O的直径,∠EBF=∠CBD,BF=2,求AD•ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,直角梯形ABCD与等腰直角三角形ABE所在的平面互相垂直,AB∥CD,AB⊥BC,AB=2CD=2BC=2,EA⊥EB,点F满足$\overrightarrow{AF}$=2$\overrightarrow{FE}$.
(1)求证:直线EC∥平面BDF;
(2)求二面角D-BF-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,以原点O为极点,以x轴的正半轴为极轴建立极坐标系.由曲线C1:y2=x上的点(x,y)按坐标变换$\left\{\begin{array}{l}{x′=x-\frac{1}{2}}\\{y′=\sqrt{2}y}\\{\;}\end{array}\right.$得到曲线C2
(Ⅰ)求曲线C2的极坐标方程;
(Ⅱ)若射线θ=$\frac{π}{3}$(ρ>0)和θ=π与曲线C2的交点分别为点A,B,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在几何体ABCDQP中,AD⊥平面ABPQ,AB⊥AQ,AB∥CD∥PQ,CD=AD=AQ=PQ=$\frac{1}{2}$AB.
(1)证明:平面APD⊥平面BDP;
(2)求二面角A-BP-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一简单几何体的三视图如图所示,则该几何体最大的面的面积等于(  )
A.2B.$2\sqrt{2}$C.$2\sqrt{3}$D.$2\sqrt{6}$

查看答案和解析>>

同步练习册答案