分析 (1)求出f(x)的导数,由题意可得f(1)=0,f′(1)=2,解方程可得a,b的值;
(2)求得f(x),g(x)的解析式,求出导数,求得单调区间和极值、最值
解答 解:(1)f(x)=x+ax2+blnx的导数f′(x)=1+2a+$\frac{b}{x}$(x>0),
由题意可得f(1)=1+a=0,f′(1)=1+2a+b=2,
得 $\left\{\begin{array}{l}{a=-1}\\{b=3}\end{array}\right.$;
(2)证明:f(x)=x-x2+3lnx,g(x)=f(x)-2x+2=3lnx-x2-x+2(x>0),g′(x)=$\frac{3}{x}$-2x-1=-$\frac{(2x+3)(x-1)}{x}$,
| x | (0,1) | 1 | (1,+∞) |
| g′(x) | + | 0 | - |
| g(x) | ↗ | 极大值 | ↘ |
点评 本题考查导数的运用:求切线的斜率和单调区间、极值和最值,考查运算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ”loga(x•y)=logax+logay“类比推出“sin(x•y)=sinx+siny“ | |
| B. | “(a+b)•c=ac+bc”类比推出“(a•b)•c=ac•bc” | |
| C. | “(a+b)•c=ac+bc”类比推出“$\frac{a+b}{c}$=$\frac{a}{c}+\frac{b}{c}$(c≠0)“ | |
| D. | “(a•b)•c=a•(b•c)“类比推出“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)“ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com