精英家教网 > 高中数学 > 题目详情
5.函数f(x)=cos2x图象的一个对称中心是(  )
A.($\frac{π}{2}$,0)B.($\frac{π}{3}$,0)C.($\frac{π}{4}$,0)D.($\frac{π}{6}$,0)

分析 令2x=kπ+$\frac{π}{2}$,求得x的值,可得它的图象的一个对称中心.

解答 解:对于函数f(x)=cos2x,令2x=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{4}$,k∈Z,
可得它的图象的一个对称中心为($\frac{π}{4}$,0),
故选:C.

点评 本题主要考查余弦函数的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=logax,x∈[2,4](a>0,a≠1),函数的最大值比最小值大1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某汽车驾驶学校在学员结业前对其驾驶技术进行4次考核,规定:按顺序考核,一旦考核合格就不必参加以后的考核,否则还需要参加下次考核,若小李参加每次考核合格的概率依次组成一个公差为$\frac{1}{8}$的等差数列,他参加第一次考核合格的概率超过$\frac{1}{2}$,且他直到参加第二次考核才合格的概率为$\frac{9}{32}$.
(1)求小李第一次参加考核就合格的概率p1
(2)求小李参加考核的次数X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设Sn为数列{an}的前n项和,已知an=$\left\{\begin{array}{l}11,n=1\\ n+1,n≥2\end{array}$,n∈N*,则$\frac{S_n}{n}$的最小值为$\frac{23}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\frac{tanA}{{a}^{2}}$=$\frac{tanB}{{b}^{2}}$,则△ABC的形状是(  )
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知在曲线y=(ax+b)ex上的一点P(0,1)的切线方程为2x-y+1=0,则a+b=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,-1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{1-x,0<x<1}\\{\sqrt{x-1},x≥1}\end{array}\right.$,若a<b<c,f(a)=f(b)=f(c),则实数a+3b+c的取值范围是(  )
A.(-∞,$\frac{11}{4}$-ln2]B.(-∞,$\frac{5}{4}$-ln2]C.(-∞,$\frac{5}{2}$-e${\;}^{\frac{1}{2}}$]D.(-∞,$\frac{15}{4}$-e${\;}^{\frac{1}{4}}$]

查看答案和解析>>

同步练习册答案