(本小题满分12分)(文题满分14分)
如图,为半圆,AB为半圆直径,O为半圆圆心,且,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变。
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过点B的直线与曲线C交于M、N两点,与OD所在直线交于E点,若为定值。
(本小题满分12分)(文22题 满分14分)
解:(Ⅰ)以AB、OD所在直线分别为x轴、y轴, O为原点,建立平面直角坐标系,
∵动点P在曲线C上运动且保持|PA|+|PB|的值不变.且点Q在曲线C上,
∴|PA|+|PB|=|QA|+|QB|=2>|AB|=4.
∴曲线C是为以原点为中心,A、B为焦点的椭圆
设其长半轴为a,短半轴为b,半焦距为c,则2a=2,∴a=,c=2,b=1.
∴曲线C的方程为+y2=1 5分
(Ⅱ)证法1:设点的坐标分别为,
又易知点的坐标为.且点B在椭圆C内,故过点B的直线l必与椭圆C相交.
∵,∴.
∴ ,. 7分
将M点坐标代入到椭圆方程中得:,
去分母整理,得. 10分
同理,由可得:.
∴ ,是方程的两个根,
∴ . 12分
(Ⅱ)证法2:设点的坐标分别为,又易知点的坐标为.且点B在椭圆C内,故过点B的直线l必与椭圆C相交.
显然直线 的斜率存在,设直线 的斜率为 ,则直线 的方程是 .
将直线 的方程代入到椭圆 的方程中,消去 并整理得
. 8分
∴ ,.
又 ∵,
则.∴,
同理,由,∴. 10分
∴. 12分
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com