精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系xOy中,已知点A(x1,y1),B(x2,y2)是椭圆E:$\frac{{x}^{2}}{4}$+y2=1上的非坐标轴上的点,且4kOA•KOB+1=0(kOA,kOB分别为直线OA,OB的斜率)
(1)证明:x12+x22,y12+y22均为定值;
(2)判断△OAB的面积是否为定值,若是,求出该定值;若不是.请说明理由.

分析 (1)将A,B的坐标代入椭圆方程,运用直线的斜率公式,化简整理即可得到定值;
(2))△OAB的面积为S=$\frac{1}{2}$|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|•sin<$\overrightarrow{OA}$,$\overrightarrow{OB}$>,由向量的数量积的定义,可得S=$\frac{1}{2}$$\sqrt{|\overrightarrow{OA}{|}^{2}•|\overrightarrow{OB}{|}^{2}-(\overrightarrow{OA}•\overrightarrow{OB})^{2}}$,运用向量的坐标运算,化简整理,即可得到定值.

解答 解:(1)证明:由题意可得$\frac{{{x}_{1}}^{2}}{4}$+y12=1,即有y12=1-$\frac{{{x}_{1}}^{2}}{4}$;
$\frac{{{x}_{2}}^{2}}{4}$+y22=1,即有y22=1-$\frac{{{x}_{2}}^{2}}{4}$.
由4kOA•KOB+1=0,可得4•$\frac{{y}_{1}{y}_{2}}{{x}_{1}{x}_{2}}$=-1,
即有16y12y22=x12x22
即16(1-$\frac{{{x}_{1}}^{2}}{4}$)(1-$\frac{{{x}_{2}}^{2}}{4}$)=x12x22
化简可得x12+x22=4;
y12+y22=1,则x12+x22,y12+y22均为定值;
(2)△OAB的面积为S=$\frac{1}{2}$|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|•sin<$\overrightarrow{OA}$,$\overrightarrow{OB}$>
=$\frac{1}{2}$$\sqrt{|\overrightarrow{OA}{|}^{2}•|\overrightarrow{OB}{|}^{2}-(\overrightarrow{OA}•\overrightarrow{OB})^{2}}$
=$\frac{1}{2}$$\sqrt{({{x}_{1}}^{2}+{{y}_{1}}^{2})({{x}_{2}}^{2}+{{y}_{2}}^{2})-({x}_{1}{x}_{2}+{y}_{1}{y}_{2})^{2}}$
=$\frac{1}{2}$$\sqrt{{{x}_{1}}^{2}{{y}_{2}}^{2}+{{x}_{2}}^{2}{{y}_{1}}^{2}-2{x}_{1}{x}_{2}{y}_{1}{y}_{2}}$
=$\frac{1}{2}$$\sqrt{{{x}_{1}}^{2}(1-\frac{1}{4}{{x}_{2}}^{2})+{{x}_{2}}^{2}(1-\frac{1}{4}{{x}_{1}}^{2})+\frac{1}{2}{{x}_{1}}^{2}{{x}_{2}}^{2}}$
=$\frac{1}{2}$$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$=1.
故△OAB的面积为定值1.

点评 本题考查椭圆的方程的运用,直线的斜率公式的运用和三角形的面积的求法,注意运用向量的数量积,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)写出命题“若x2-3x+2=0,则x=1或x=2”的逆命题、否命题及逆否命题;
(2)写出命题“?x0∈R,使得x02+x0-1<0”的否定形式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知F1,F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,A是其上顶点,且△AF1F2是等腰直角三角形,延长AF2与椭圆C交于另一点B,若△AF1B的面积为6,则椭圆C的方程为$\frac{{x}^{2}}{9}+\frac{2{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-3x+m+1nx(m∈R)
(1)求f(x)的单调增区间与减区间;
(2)填表(不要求过程,只填结果即可)
m的范围   
方程f(x)=0的解得个数123

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求和:(x+$\frac{1}{y}$)+(x2$\frac{1}{y^2}$)+…+(xn+$\frac{1}{{y}^{n}}$)(xy≠0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知sin2α=$\frac{5}{13}$,$\frac{π}{4}$<α<$\frac{π}{2}$,求sin4α,cos4α,tan4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.10名工人某天生产同一零件,生产的件数是15,17,14,10,17,17,16,14,12,10,设平均数为a,中位数为b,众数为c,则有(  )
A.a>b>cB.b>c>aC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,ABCD为边长为3的正方形,把各边三等分后,共有16个交点,从中选取两个交点作为向量,则与$\overrightarrow{AC}$平行且长度为2$\sqrt{2}$的向量个数有8个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=6,|$\overrightarrow{b}$|=10,则|$\overrightarrow{a}$+$\overrightarrow{b}$|的最大值是16,最小值是4.

查看答案和解析>>

同步练习册答案