C
分析:A、利用正态分布的图象进行求解;B、看回归直线的斜率与0的大小关系;C、利用定积分的计算法则进行求解;D、根据命题否定的定义进行判断;
解答:A、由随机变量ξ服从正态分布N(0,σ
2)可知正态密度曲线关于y轴对称,
而P(-2≤x≤0)=0.4,
∴P(-2≤x≤2)=0.8
则P(ξ>2)=
(1-P(-2≤x≤2))=0.1,故A错.
B、回归方程y=2-2.5x,变量x增加一个单位时,
变量y平均变化[2-2.5(x+1)]-(2-2.5x)=-2.5
∴变量y平均减少2.5个单位,故B错误;
C、∵函数f(a)=
,∴f(
)=
sinxdx=(-cosx)
=0-(-1)=1;
∴f[f(
)]=f(1)=
=(-cosx)
=-cos1-(-cos0)=1-cos1;故C正确;
D、对于命题p:?x∈R,使得x
2+x+1<0,可得¬p:?x∈R,均有x
2+x+1≥0,故D错误;
故选C;
点评:此题主要考查命题的判断与应用,此题考查的知识点比较全面,此题是一道基础题;