精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM,交y轴于点P,切圆于点M,若2
OM
=
OF
+
OP
,则双曲线的离心率是(  )
A、
5
B、
3
C、2
D、
2
分析:根据向量加法法则,得到OM是△POF中PF边上的中线.由PF与圆x2+y2=a2相切得到OM⊥PF,从而可得△POF是等腰直角三角形,∠MF0=45°.最后在Rt△OMF利用三角函数的定义算出
a
c
=
2
2
,可得双曲线的离心率大小.
解答:解:精英家教网∵2
OM
=
OF
+
OP

∴△POF中,OM是PF边上的中线.
∵PF与圆x2+y2=a2相切,∴OM⊥PF,
由此可得△POF中,PO=FO,∠MF0=45°,
又∵Rt△OMF中,OM=a,OF=c,
∴sin∠MF0=
OM
OF
=
2
2
,即
a
c
=
2
2

因此,双曲线的离心率e=
c
a
=
2

故选:D
点评:本题在双曲线中给出向量关系式,在直线与圆相切的情况下求双曲线的离心率.着重考查了解直角三角形、向量的加法法则、直线与圆的位置关系和双曲线的简单性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为(  )
A、3
B、2
C、
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的右焦点F作圆x2+y2=a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1
的左焦点F作⊙O:x2+y2=a2的两条切线,记切点为A,B,双曲线左顶点为C,若∠ACB=120°,则双曲线的渐近线方程为(  )
A、y=±
3
x
B、y=±
3
3
x
C、y=±
2
x
D、y=±
2
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F引它到渐进线的垂线,垂足为M,延长FM交y轴于E,若
FM
=2
ME
,则该双曲线离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点F作一条渐近线的平行线,该平行线与y轴交于点P,若|OP|=|OF|,则双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案