精英家教网 > 高中数学 > 题目详情
(12分)(2011•陕西)如图,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把是BC上的△ABD折起,使∠BDC=90°.

(Ⅰ)证明:平面ADB⊥平面BDC;
(Ⅱ)设BD=1,求三棱锥D﹣ABC的表面积.
(Ⅰ)见解析(Ⅱ)

试题分析:(Ⅰ)翻折后,直线AD与直线DC、DB都垂直,可得直线与平面BDC垂直,再结合AD是平面ADB内的直线,可得平面ADB与平面垂直;
(Ⅱ)根据图形特征可得△ADB、△DBC、△ADC是全等的等腰直角三角形,△ABC是等边三角形,利用三角形面积公式可得三棱锥D﹣ABC的表面积.
解:(Ⅰ)∵折起前AD是BC边上的高,
∴当△ABD折起后,AD⊥DC,AD⊥DB,
又DB∩DC=D,
∴AD⊥平面BDC,
∵AD?平面ABD.
∴平面ADB⊥平面BDC
(Ⅱ)由(Ⅰ)知,DA⊥DB,DB⊥DC,DC⊥DA,
∵DB=DA=DC=1,∴AB=BC=CA=
从而

所以三棱锥D﹣ABC的表面积为:

点评:解决平面图形翻折问题的关键是看准翻折后没有发生变化的位置关系,抓住翻折后仍然垂直的直线作为条件,从而解决问题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.
(1)求证:平面AHC平面;(2)(2)求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中,°,平面平面分别为中点.
(1)求证:∥平面
(2)求证:
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四棱锥P-ABCD的侧面PAB水平放置,PB⊥平面ABCD,CB⊥平面PAB,ADBC,且AD<BC,则四棱锥P-ABCD的正视图是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若圆锥的侧面展开图是半径为2、圆心角为180°的扇形,则这个圆锥的体积是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在斜二测画法下,四边形A′B′C′D′是下底角为45°的等腰梯形,其下底长为5,一腰长为,则原四边形的面积是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个正三棱柱的侧棱长和底面边长相等,体积为2,它的三视图中的俯视图如图所示,侧视图是一个矩形,则这个矩形的面积是(  )
A.4 B.2 C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知某一多面体内接于一个简单组合体,如果该组合体的正视图.测试图.俯视图均如图所示,且图中的四边形是边长为2的正方形,则该球的表面积是_______________

查看答案和解析>>

同步练习册答案