精英家教网 > 高中数学 > 题目详情

(本小题满分13分)经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格(元)与时间(天)的函数关系近似满足为正的常数),日销售量(件)与时间(天)的函数关系近似满足,且第25天的销售金额为13000元.
(1)求的值;
(2)试写出该商品的日销售金额关于时间的函数关系式,并求前半个月销售金额的最小值。

(1);(2= ,有最小值12100 元。

解析试题分析:(1)由题意,得,即,
解得……4分
(2) 
= ……9分
时,上单调减,在上单调增
所以当时,有最小值12100 元……………13分
考点:函数的实际应用;分段函数。函数的单调性及最值。
点评:研究数学模型,建立数学模型,进而借鉴数学模型,对提高解决实际问题的能力,以及提高数学素养都是十分重要的.建立模型的步骤可分为: (1) 分析问题中哪些是变量,哪些是常量,分别用字母表示; (2) 根据所给条件,运用数学知识,确定等量关系; (3) 写出的解析式并指明定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分16分)
有甲、乙两种商品,经销这两种商品所获的利润依次为(万元)和(万元),它们与投入的资金(万元)的关系,据经验估计为:,  今有3万元资金投入经销甲、乙两种商品,为了获得最大利润,应对甲、乙两种商品分别投入多少资金?总共获得的最大利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分) 本题共有2个小题,第1小题满分6分,第2小题满分8分.
已知函数=.
(1)判断函数的奇偶性,并证明;
(2)求的反函数,并求使得函数有零点的实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数),
(Ⅰ)求函数的最小值;
(Ⅱ)已知:关于的不等式对任意恒成立;
:函数是增函数.若“”为真,“”为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

命题方程有两个不等的正实数根,命题方程无实数根。若“”为真命题,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
如图,在半径为圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆上,点在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.

(1)写出体积关于的函数关系式,并指出定义域;
(2)当为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知幂函数为偶函数.
⑴求的值;
⑵若,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
(1)求值
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业为打入国际市场,决定从A、B两种产品中只选择一种进行投资生产.已
知投资生产这两种产品的有关数据如下表:(单位:万美元)

项目类别
 
年固定成本
 
每件产品成本
 
每件产品销售价
 
每年最多可生产的件数
 
A产品
 
10
 
m
 
5
 
100
 
B产品
 
20
 
4
 
9
 
60
 
其中年固定成本与年生产的件数无关,m为待定常数,其值由生产A产品的原材料价格决定,预计m∈[3,4].另外,年销售x件B产品时需上交0.05x2万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产A、B两种产品的年利润y1,y2与生产相应产品的件数x之间的函数关系并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.

查看答案和解析>>

同步练习册答案