精英家教网 > 高中数学 > 题目详情

(本小题满分15分)
如图,在半径为圆形(为圆心)铝皮上截取一块矩形材料,其中点在圆上,点在两半径上,现将此矩形铝皮卷成一个以为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),设矩形的边长,圆柱的体积为.

(1)写出体积关于的函数关系式,并指出定义域;
(2)当为何值时,才能使做出的圆柱形罐子体积最大?最大体积是多少?

(1)(2)当时,V有最大值

解析试题分析:(1)连结OB,∵,∴
设圆柱底面半径为,则,即
所以  其中
(2)由,得
因此在(0,)上是增函数,在(,30)上是减函数。
所以当时,V有最大值
考点:函数应用题
点评:在求解函数应用题时注意实际限定条件对题目的影响

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题13分)
已知函数
(1)若对一切实数恒成立,求实数的取值范围.
(2)求在区间上的最小值的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.
(1)设在甲家租一张球台开展活动小时的收费为,在乙家租一张球台开展活动小时的收费为,试求
(2)问:小张选择哪家比较合算?说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分).某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(Ⅰ)写出关于的函数表达式,并求该函数的定义域;
(Ⅱ)求该容器的建造费用最小时的

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)经市场调查,某商场的一种商品在过去的一个月内(以30天计)销售价格(元)与时间(天)的函数关系近似满足为正的常数),日销售量(件)与时间(天)的函数关系近似满足,且第25天的销售金额为13000元.
(1)求的值;
(2)试写出该商品的日销售金额关于时间的函数关系式,并求前半个月销售金额的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)计算:
(1)集合
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数,
(1)若,且的取值范围
(2)当时,恒成立,且的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)已知f(x)=m(x-2m)(x+m+3),g(x)=-2,若同时满足条件:
x∈R,f(x) <0或g(x) <0;②x∈(﹣∝, ﹣4),f(x)g(x) <0。求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上的最大值为,最小值为
(1)求
(2)作出的图像,并分别指出的最小值和的最大值各为多少?

查看答案和解析>>

同步练习册答案