
解:(Ⅰ)∵PA是切线,AB是弦,
∴∠BAP=∠C.
又∵∠APD=∠CPE,
∴∠BAP+∠APD=∠C+∠CPE.
∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,
∴∠ADE=∠AED.…(5分)
(Ⅱ) 由(Ⅰ)知∠BAP=∠C,
∵∠APC=∠BPA,
∵AC=AP,
∴∠APC=∠C
∴∠APC=∠C=∠BAP.
由三角形内角和定理可知,∠APC+∠C+∠CAP=180°.
∵BC是圆O的直径,
∴∠BAC=90°.
∴∠APC+∠C+∠BAP=180°-90°=90°.
∴

.
在Rt△ABC中,

,即

,
∴

.
∵在△APC与△BPA中
∠BAP=∠C,∠APB=∠CPA,
∴△APC∽△BPA.
∴

.
∴

. …(10分)
分析:(Ⅰ)根据弦切角定理,得到∠BAP=∠C,结合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;
(Ⅱ)根据AC=AP得到∠APC=∠C,结合(I)中的结论可得∠APC=∠C=∠BAP,再在△APC中根据直径BC得到∠PAC=90°+∠BAP,利用三角形内角和定理可得

.利用直角三角形中正切的定义,得到

,最后通过内角相等证明出△APC∽△BPA,从而

.
点评:本题综合考查了弦切角、三角形的外角定理、直角三角形中三角函数的定义和相似三角形的性质等知识点,属于中档题.找到题中角的等量关系,计算出Rt△ABC是含有30度的直角三角形,是解决本题的关键所在.