精英家教网 > 高中数学 > 题目详情
20.设同在一个平面上的动点P,Q的坐标分别是(x,y),(X,Y)并且坐标间存在关系X=3x+2y-1,Y=3x+2y+1,当动点P在不平行于坐标轴的直线l上移动时,动点Q在与这直线l垂直且通过点(2,1)的直线上移动,求直线l的方程.

分析 根据l不平行于坐标轴,设出l的方程,得到k=$\frac{3k+3}{2k-2}$,b=-$\frac{3}{2k-2}$,解出k的值,从而求出相对应的k和b的值,从而求出函数的表达式即可.

解答 解:∵l不平行于坐标轴
∴设l:y=kx+b
∵Q在与这条直线l垂直且通过点(2,1)的直线L2上移动
点斜式:
L2:y-1=-$\frac{1}{k}$(x-2)
将Q坐标代入得:
k(Y-1)=(2-X)
将X=3x+2y-1,Y=3x+2y+1,代入上式得:
y=$\frac{3k+3}{2k-2}$x-$\frac{3}{2k-2}$,
∵y=kx+b,
∴k=$\frac{3k+3}{2k-2}$,b=-$\frac{3}{2k-2}$
∴2k2-5k-3=0,(2k+1)(k-3)=0,
解得:k=-$\frac{1}{2}$或k=3,
b=1或-$\frac{3}{4}$
∴y=-$\frac{1}{2}$x+1或y=3x-$\frac{3}{4}$,
直线l的方程:12x-4y-3=0或x+2y-2=0.

点评 本题考察了通过待定系数法求出直线的方程问题,考察学生的计算能力,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设P是双曲线$\frac{{x}^{2}}{4}$-y2=1上的意一点,点P到双曲线的两条渐近线的距离分别为d1,d2,则(  )
A.d1+d2=$\frac{4\sqrt{5}}{5}$B.d1•d2=$\frac{4\sqrt{5}}{5}$C.d1+d2=$\frac{4}{5}$D.d1•d2=$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=lnx,φ(x)=$\frac{a}{x+1}$,a为正常数.
(1)函数y=f(x)的图象上任意不同的两点A(x1,y1),B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,试证明:k>f′(x0);
(2)若g(x)=|f(x)|+φ(x),且对任意的x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=$\sqrt{2}$,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$的夹角为45°,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=x=$\frac{\sqrt{6}±\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过点B(3,4)作直线,使之与点A(1,1)的距离为2,求该直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$=(m+6,2),$\overrightarrow{b}$=(1,m),$\overrightarrow{c}$=(2m-1,m+1),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则向量$\overrightarrow{c}$在向量$\overrightarrow{a}$-$\overrightarrow{b}$方向的投影是(  )
A.5B.4C.-$\frac{19}{5}$D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,在⊙O的内接五边形ABCDE中,∠CAD=40°,则∠B+∠E=220°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,长方体的三个面的对角线AD′=a,A′B=b,AC=c,则长方体的对角线AC′=$\sqrt{\frac{{a}^{2}+{b}^{2}+{c}^{2}}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知抛物线y2=8x的焦点F,该抛物线的一点A到y轴距离为3,则|AF|=5.

查看答案和解析>>

同步练习册答案