精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=lnx,φ(x)=$\frac{a}{x+1}$,a为正常数.
(1)函数y=f(x)的图象上任意不同的两点A(x1,y1),B(x2,y2),线段AB的中点为C(x0,y0),记直线AB的斜率为k,试证明:k>f′(x0);
(2)若g(x)=|f(x)|+φ(x),且对任意的x1,x2∈(0,2],且x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,求a的取值范围.

分析 (1)先求f(x)的导函数,得到f′(x0),在利用斜率公式求出过这两点的斜率公式,利用构造函数并利用构造函数的单调性比较大小;
(2)因为g(x)=|lnx|+φ(x),且对任意的x1,x2∈(0,2],x1≠x2,都有$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,先写出g(x)的解析式,利用该函数的单调性把问题转化为恒成立问题进行求解.

解答 (1)证明:∵f(x)=lnx,
∴f′(x)=$\frac{1}{x}$,∴f′(x0)=$\frac{1}{{x}_{0}}$=$\frac{2}{{x}_{1}{+x}_{2}}$,
又k=$\frac{f{(x}_{2})-f{(x}_{1})}{{x}_{2}{-x}_{1}}$=$\frac{l{nx}_{2}-l{nx}_{1}}{{x}_{2}{-x}_{1}}$=$\frac{ln\frac{{x}_{2}}{{x}_{1}}}{{x}_{2}{-x}_{1}}$,
不妨设x2>x1,要比较k与f'(x0)的大小,
即比较$\frac{ln\frac{{x}_{2}}{{x}_{1}}}{{x}_{2}{-x}_{1}}$与$\frac{2}{{x}_{1}{+x}_{2}}$的大小,
又∵x2>x1
∴即比较ln$\frac{{x}_{2}}{{x}_{1}}$与 $\frac{2{(x}_{2}{-x}_{1})}{{x}_{1}{+x}_{2}}$=$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{(\frac{{x}_{2}}{{x}_{1}}+1)}$的大小.
令h(x)=lnx-$\frac{2(x-1)}{x+1}$(x≥1),
则h′(x)=$\frac{1}{x}$-$\frac{4}{{(x+1)}^{2}}$=$\frac{{(x-1)}^{2}}{{x(x+1)}^{2}}$≥0
∴h(x)在[1,+∞)上是增函数.
又$\frac{{x}_{2}}{{x}_{1}}$>1,
∴h($\frac{{x}_{2}}{{x}_{1}}$)>h(1)=0,
∴ln$\frac{{x}_{2}}{{x}_{1}}$>$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{(\frac{{x}_{2}}{{x}_{1}}+1)}$,
即k>f′(x0);
(3)∵$\frac{g({x}_{2})-g({x}_{1})}{{x}_{2}-{x}_{1}}$<-1,
∴$\frac{g{(x}_{2}){+x}_{2}-[g{(x}_{1}){+x}_{1}]}{{x}_{2}{-x}_{1}}$<0
由题意得F(x)=g(x)+x在区间(0,2]上是减函数.
1°当1≤x≤2,F(x)=lnx+$\frac{a}{x+1}$+x,
∴F′(x)=$\frac{1}{x}$-$\frac{a}{{(x+1)}^{2}}$+1
由F′(x)≤0⇒a≥$\frac{{(x+1)}^{2}}{x}$+(x+1)2=x2+3x+$\frac{1}{x}$+3在x∈[1,2]恒成立.
设m(x)=x2+3x+$\frac{1}{x}$+3,x∈[1,2],则m′(x)=2x-$\frac{1}{{x}^{2}}$+3>0
∴m(x)在[1,2]上为增函数,
∴a≥m(2)=$\frac{27}{2}$;
2°当0<x<1,F(x)=-lnx+$\frac{a}{x+1}$+x,
∴F′(x)=-$\frac{1}{x}$-$\frac{a}{{(x+1)}^{2}}$+1
由F′(x)≤0⇒a≥-$\frac{{(x+1)}^{2}}{x}$+(x+1)2=x2+x-$\frac{1}{x}$-1在x∈(0,1)恒成立
设t(x)=x2+x-$\frac{1}{x}$-1,x∈(0,1)为增函数
∴a≥t(1)=0
综上:a的取值范围为a≥$\frac{27}{2}$.

点评 此题考查了利用导函数求函数的单调地增区间,还考查了构造函数并利用构造的函数的单调性把问题转化为恒成立的问题,重点考查了学生的转化的思想及构造的函数与思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.三角形的内角x满足2cos2x+1=0,则角x=60°或120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.向量|$\overrightarrow{a}$=3,|$\overrightarrow{b}$|=$\sqrt{3}$,<$\overrightarrow{a}$,$\overrightarrow{b}$>=30°,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.3B.$\sqrt{3}$C.$\frac{9}{2}$D.$\frac{9}{2}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知taα=3,计算$\frac{2sinα+cosα}{3sinα-cosα}$=$\frac{7}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正项数列{an}的前n项和Sn满足:S${\;}_{n}^{2}$-(n2+n-1)Sn-n(n+1)=0(n∈N*),数列{bn}满足b1=$\frac{{a}_{1}}{2}$,且bn+1+bn=0(n∈N*).
(1)求a1的值及数列{an}的通项公式;
(2)设cn=$\frac{(2n+1){b}_{n}}{{S}_{n}}$,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|x>1或x<0},B={x|x>3或x<-1},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若a>1,则1+$\frac{\sqrt{(1-a)^{2}}}{a-1}$的值是(  )
A.1B.2C.0D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设同在一个平面上的动点P,Q的坐标分别是(x,y),(X,Y)并且坐标间存在关系X=3x+2y-1,Y=3x+2y+1,当动点P在不平行于坐标轴的直线l上移动时,动点Q在与这直线l垂直且通过点(2,1)的直线上移动,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.画出下列函数的图象.
(1)y=x+1(|x|≤2且x∈Z)
(2)$y=\frac{|x|}{x}$

查看答案和解析>>

同步练习册答案