精英家教网 > 高中数学 > 题目详情
如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AD,M,N分别是AB,PC的中点.
(1)求证:MN∥平面PAD;
(2)求证:平面MND⊥平面PCD.
考点:平面与平面垂直的判定,直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:(1)要证明MN∥平面PAD,可以想着找一个MN所在平面和平面PAD平行,取CD中点E,连接ME,NE,则容易证明ME∥平面PAD,NE∥平面PAD,所以平面MNE∥平面PAD,这样就能得到MN∥平面PAD;
(2)只要在平面MNE内找一直线和平面PCD垂直即可,通过观察MN像是所找直线,容易证明MN⊥CD,连接PM,CM,能得到PM=CM,所以MN⊥PC,这样这条直线就找到了,也就能证出平面MND⊥平面PCD了.
解答: 证明:(1)取CD中点E,连接ME,NE,
则:ME∥AD,NE∥PD,AD?平面PAD,PD?平面PAD;
∴ME∥平面PAD,NE∥平面PAD,NE∩ME=E;
∴平面MNE∥平面PAD,MN?平面MNE;
∴MN∥平面PAD.
(2)∵PA⊥平面ABCD,AB?平面ABCD;
∴PA⊥AB,即AB⊥PA;
又AB⊥AD,PA∩AD=A;
∴AB⊥平面PAD,CD∥AB;
∴CD⊥平面PAD,
∵MN∥平面PAD,CD⊥平面PAD;
∴CD⊥MN,即MN⊥CD,连接PM,CM;
∵AM=BM,PA=CB,∠PAM=∠CBM;
∴△PAM≌△CBM,∴PM=CM,N是PC中点;
∴MN⊥PC,PD∩CD=C,PD,CD?平面PCD;
∴MN⊥平面PCD,MN?平面MNE;
∴平面MND⊥平面PCD.
点评:本题考查线面平行的判定定理,面面平行的判定定理,面面平行的性质,线面垂直的性质,线面垂直的判定定理,面面垂直的判定定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
5
6
,an+1=
1
3
an+(
1
2
n+1,求an

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在梯形ABCD中,AB∥CD,过D作与BC平行的直线交AB于点E,∠ACE=∠ABC,求证:AB•CE=AC•DE.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的偶函数f(x)满足:对任意的x∈R,都有f(x+2)=f(x),且当x∈[0,1〕,时f(x)=
x
,则函数g(x)=3f(x)-x,在R上的零点个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
(x≠0,a∈R)
(1)当a=4时,证明:函数f(x)在区间[2,+∞)上单调递增;
(2)若函数f(x)在[2,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
p
=(2sin(x-
π
6
),1),
q
=(cosx,-
1
2
),函数f(x)=
p
q
(x∈R).
(Ⅰ)求函数f(x)的最小正周期对称中心及单调减区间;
(Ⅱ)已知△ABC内角A、B、C的对边分别为a、b、c,且c=3,f(C)=0,若向量
m
=(1,sinA)与
n
=(2,sinB)共线,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
(-1)nsin
πx
2
+2n,x∈[2n,2n+1)
(-1)n+1sin
πx
2
+2n+2,x∈[2n+1,2n+2)
(n∈N)
,若数列{an}满足am=f(m)(m∈N*),数列{am}的前m项和为Sm,则S104-S96=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=2,且对任意n∈N*,都有an+1=ban+c,其中b,c是常数.
(1)若数列{an}是等差数列,且c=2,求数列{an}的通项公式;
(2)若数列{an}是等比数列,且|b|<2,当从数列{an}中任意取出相邻的三项,按某种顺序排列成等差数列,求使数列{an}的前n项和Sn
341
256
成立的n的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
1-x
的图象与函数y=2sinπx(-4≤x≤6)的图象所有交点的横坐标之和等于
 

查看答案和解析>>

同步练习册答案