精英家教网 > 高中数学 > 题目详情
19.画出函数y=|-x2+2x+3|的图象,并指出其单调区间.

分析 先把函数y=-x2+2x+3化成顶点式,即可直接得出其顶点坐标,分别令x=0,y=0求出图象与x、y轴的交点,根据其四点可画出函数的图象,根据图象,即可求得函数的单调区间.

解答 解:∵y=-x2+2x+3=-(x-1)2+4,
∴y=-x2+2x+3图象开口方向向下,对称轴x=1,顶点坐标(1,4),
令x=0得:y=3,∴与y轴交点坐标(0,3),
令y=0得:-x2+2x+3=0,∴x1=1 x2=3,
∴与x轴交点坐标(-1,0),(3,0),
作出函数y=-x2+2x+3的图象,并把x轴下方的图象翻折到x轴上方,如图所示
由图象可知,函数的单调减区间为(-∞,-1),(1,3);单调增区间为(-1,1),(3,+∞);

点评 本题考查的是二次函数的性质,只要根据题意把函数的一般式化为顶点式,在利用翻折变换画出函数的图象,便可轻松解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=sin(x+$\frac{π}{6}$)cos(x+$\frac{π}{3}$),求函数g(x)=f(x)+sinx在区间[-$\frac{π}{6}$,$\frac{2π}{3}$]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列各组中的两个集合间的关系.
(1)P={x|x=2n,n∈Z},Q={x|x=4n,n∈Z};
(2)P={x|x=2n-1,n∈N*},Q={x|x=2n+1,n∈N*};
(3)P={x|x2-x=0},Q={x|x=$\frac{1+(-1)^{n}}{2}$,n∈Z};
(4)已知集合A={x|x=$\frac{1}{9}$(2k+1),k∈Z},B={x|x=$\frac{4}{9}$k±$\frac{1}{9}$,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在锐角△ABC中,tanA=t+1,tanB=t-1,则实数t的取值范围是(  )
A.($\sqrt{2}$,+∞)B.(1,+∞)C.(1,$\sqrt{2}$)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=ex-mx-exlnx+1,且定义域为(0,e],若函数f(x)在定义域内有两个极值点,则m的取值范围为(  )
A.[0,ee-2e]B.(0,ee-2e]C.(0,ee-2e)D.(ee-2e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.给出以下四个命题:
①正态曲线当μ一定时曲线形状由σ确定,σ越小曲线越“瘦高”表示总体分布越集中;
②过点(-1,2)且在x轴和y轴上的截距相等的直线方程是x+y-1=0;
③函数f(x)=2x+2x-3在定义域内有且只有一个零点;
④回归方程拟合效果可用R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$刻画,R2越接近1表示回归效果越差;
其中正确命题的序号为①③.(把你认为正确的命题序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=5,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则|$\overrightarrow{a}$-$\overrightarrow{b}$|等于(  )
A.5$\sqrt{3}$B.$\frac{5\sqrt{3}}{2}$C.$\sqrt{3}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.(2+x+x2)(1-$\frac{1}{x}$)3的展开式中常数项为(  )
A.-2B.5C.4D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足A=60°,sinB+sinC=2sinA,bc=5,则a的值为(  )
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

同步练习册答案