精英家教网 > 高中数学 > 题目详情
(2010•江苏模拟)如图所示,在单位正方体ABCD-A1B1C1D1的面对角线A1B上存在一点P使得AP+D1P最短,则AP+D1P的最小值为
2+
2
2+
2
分析:把对角面A1C绕A1B旋转至A1BC′D1′,使其与△AA1B在同一平面上,连接AD1′并求出,就是最小值.
解答:解:如图所示,把对角面A1C绕A1B旋转至A1BC′D1′,
使其与△AA1B在同一平面上,连接AD1′,
则AD1′=
1+1-2×1×1×cos135°
=
2+
2
为所求的最小值.
故答案为:
2+
2
点评:本题考查棱柱的结构特征,考查计算能力,空间想象能力,解决此类问题常通过转化,转化为在同一平面内两点之间的距离问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•江苏模拟)某学生对函数f(x)=2x•cosx的性质进行研究,得出如下的结论:
①函数f(x)在[-π,0]上单调递增,在[0,π]上单调递减;
②点(
π2
,0)
是函数y=f(x)图象的一个对称中心;
③函数y=f(x)图象关于直线x=π对称;
④存在常数M>0,使|f(x)|≤M|x|对一切实数x均成立.
其中正确的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)将复数
1+2i
3+i3
表示为a+bi(a,b∈R,i为虚数单位)的形式为
1
10
+
7
10
i
1
10
+
7
10
i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)在标有数字1,2,3…,10,11,12的12张大小相同的卡片中,依次取出不同的三张卡片它们的数字和恰好是3的倍数的概率是
19
55
19
55

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)已知直线(1+4k)x-(2-3k)y-(3+12k)=0(k∈R)所经过的定点F恰好是椭圆C的一个焦点,且椭圆C上的点到点F的最大距离为8.
(1)求椭圆C的标准方程;
(2)已知圆O:x2+y2=1,直线l:mx+ny=1.试证明当点P(m,n)在椭圆C上运动时,直线l与圆O恒相交;并求直线l被圆O所截得的弦长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江苏模拟)设实数x,y满足
x-y-2≤0
x+2y-5≥0
y-2≤0
u=
y2-x2
xy
的取值范围是
[-
8
3
3
2
]
[-
8
3
3
2
]

查看答案和解析>>

同步练习册答案