精英家教网 > 高中数学 > 题目详情
已知长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,则直线BD1与平面BCC1B1所成角的正弦值为(  )
A.
3
3
B.
2
2
C.
6
3
D.
1
2

∵长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,
∴BD1=
4+1+1
=
6

∵直线BD1与平面BCC1B1所成角为∠D1BC1
∴直线BD1与平面BCC1B1所成角的正弦值sin∠D1BC1=
D1C1
BD1
=
2
6
=
6
3

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形ABCD外有一点P,且PA=PB=PC=PD=2中,E是PC的中点.
(1)求证:PA平面EBD;
(2)求异面直线PA与BE所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,底面ABCD是一直角梯,∠BAD=90°,ADBC,AB=BC=a,AD=2a,PA⊥底面ABCD,PD与底面成30°角.
(1)若AE⊥PD,E为垂足,求证:BE⊥PD;
(2)在(1)的条件下,求异面直线AE与CD所成角的余弦值;
(3)求平面PAB与平面PCD所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,且SD=AD=
2
AB
,E是SA的中点.
(1)求证:平面BED⊥平面SAB;
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D中,异面直线A1D与D1C所成的角为______度;直线A1D与平面AB1C1D所成的角为______度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中,对角线AC1与底面ABCD所成角的正切值等于(  )
A.1B.
2
C.
2
2
D.
3
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA、AB、AD两两互相垂直,BCAD,且AB=AD=2BC,E,F分别是PB、PD的中点.
(1)证明:EF平面ABCD;
(2)若PA=AB,求PC与平面PAD所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB的中点,N为SC的中点.
(1)求证:MN平面SAD;
(2)求证:平面SMC⊥平面SCD;
(3)记
CD
AD
,求实数λ的值,使得直线SM与平面SCD所成的角为30°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5AA1=4,点D是AB的中点.
(1)求证:AC⊥BC1
(2)求多面体ADC-A1B1C1的体积;
(3)求二面角D-CB1-B的平面角的正切值.

查看答案和解析>>

同步练习册答案