精英家教网 > 高中数学 > 题目详情
已知函数f(x)=loga(1+x)-loga(1-x)(a>0且a≠1)
(1)讨论f(x)的奇偶性与单调性;
(2)若不等式|f(x)|<2的解集为{x|-
1
2
<x<
1
2
},求a
的值.
分析:(1)先确定函数的定义域,再验证f(-x)与f(x)的关系,可得函数为奇函数;利用导数,结合分类讨论,可得函数的单调性;
(2)根据不等式的解集与方程解的关系,建立等式,从而可求a的值.
解答:解:(1)∵
1+x>0
1-x>0
,∴f(x)定义域为x∈(-1,1)
∵f(-x)=loga(1-x)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-f(x)
∴f(x)为奇函数;
∵f(x)=loga(1+x)-loga(1-x),
f(x)=loga
1+x
1-x

求导得f′(x)=
1-x
1+x
•logae•(
1+x
1-x
)′=
2
1-x2
logae

①当a>1时,f'(x)>0,∴f(x)在定义域内为增函数;
②当0<a<1时,f'(x)<0,∴f(x)在定义域内为减函数;
(2)①当a>1时,∵f(x)在定义域内为增函数且为奇函数,不等式|f(x)|<2的解集为{x|-
1
2
<x<
1
2
}
f(
1
2
)=2
,∴loga3=2,∴a=
3

②当0<a<1时,
∵f(x)在定义域内为减函数且为奇函数,不等式|f(x)|<2的解集为{x|-
1
2
<x<
1
2
}
f(-
1
2
)=2
,∴loga
1
3
=2
,∴a=
3
3
点评:本题考查函数的奇偶性与单调性,考查解不等式,考查学生的计算能力,考查分类讨论的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=2x-2+ae-x(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;
(2)当a=1时,若直线l:y=kx-2与曲线y=f(x)在(-∞,0)上有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2|lnx-1|.
(1)求函数y=f(x)的最小值;
(2)证明:对任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)对于函数f(x)图象上的不同两点A(x1,y1),B(x2,y2)(x1<x2),如果在函数f(x)图象上存在点M(x0,y0)(其中x0∈(x1,x2))使得点M处的切线l∥AB,则称直线AB存在“伴侣切线”.特别地,当x0=
x1+x2
2
时,又称直线AB存在“中值伴侣切线”.试问:当x≥e时,对于函数f(x)图象上不同两点A、B,直线AB是否存在“中值伴侣切线”?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线x+3y-1=0垂直,若数列{
1
f(n)
}的前n项和为Sn,则S2012的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=xlnx
(Ⅰ)求函数f(x)的极值点;
(Ⅱ)若直线l过点(0,-1),并且与曲线y=f(x)相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)试就实数a的不同取值,写出该函数的单调增区间;
(2)已知当x>0时,函数在(0,
6
)上单调递减,在(
6
,+∞)上单调递增,求a的值并写出函数的解析式;
(3)记(2)中的函数图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案