精英家教网 > 高中数学 > 题目详情
点P是双曲线
x2
4
-
y2
12
=1
上的一点,F1、F2分别是双曲线的左、右两焦点,∠F1PF2=90°,则|PF1|•|PF2|等于(  )
A、48B、32C、16D、24
分析:依题意可知a2=4,b2=12,进而求得c,求得F1F2,令PF1=p,PF2=q,由勾股定理得p2+q2=|F1F2|2,求得p2+q2的值,由双曲线定义:|p-q|=2a两边平方,把p2+q2代入即可求得pq即|PF1|•|PF2|的值.
解答:解:依题意可知a2=4,b2=12
所以c2=16
F1F2=2c=8
令PF1=p,PF2=q
由双曲线定义:|p-q|=2a=4
平方得:p2-2pq+q2=16
∠F1PF2=90°,由勾股定理得:
p2+q2=|F1F2|2=64
所以pq=24
即|PF1|•|PF2|=24
故选D.
点评:本题主要考查了双曲线的性质.要利用好双曲线的定义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

点P是双曲线
x2
4
-y2
=1的右支上一点,M、N分别是圆(x+
5
)2+y2
=1和圆(x-
5
)2+y2
=1上的点,则|PM|-|PN|的最大值是
2+2
5
2+2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

点P是双曲线
x2
4
-y2=1
右支上的点,直线l交双曲线的两条渐近线于A,B两点,且P为线段AB的中点
(1)若P(2
2
,1)
,求直线l的方程;
(2)若直线l的斜率为2,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
4
-
y2
5
=1
右支上一点,F是该双曲线的右焦点,点M为线段PF的中点,若|OM|=3,则点P到该双曲线右准线的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是双曲线
x2
4
-
y2
3
=1
上一点,F1、F2是此双曲线的焦点,若∠F1PF2=60°,则△F1PF2的面积为
3
3
3
3

查看答案和解析>>

同步练习册答案