精英家教网 > 高中数学 > 题目详情
有一个棱长为1的正方体,按任意方向正投影,其投影面积的最大值是(  )
A、1
B、
3
2
2
C、
2
D、
3
分析:首先想象一下,当正方体绕着对角线BD'所在的直线转动时,体会投影的变化,当正方体为ABCD-A'B'C'D'投影最大的时候,应该是投影面α和面AB'C平行,从而得到结果.
解答:精英家教网解:设正方体为ABCD-A'B'C'D'投影最大的时候,是投影面α和面AB'C平行,
三个面的投影为三个全等的菱形,其对角线为
2
,即投影上三条对角线构成边长为
2
的等边三角形.
∴投影的面积=2S△AB′C=
1
2
×
2
×
6
2
×2=
3

故选D.
点评:本题考查平行投影及平行投影作图法,本题是一个计算投影面积的题目,注意解题过程中的投影图的变化情况,本题是一个中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

两个相同的正四棱锥组成如图所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有
 
个.
精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

9、两相同的正四棱锥组成左图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(06年江苏卷)两相同的正四棱锥组成如图1所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有

(A)1个     (B)2个

(C)3个     (D)无穷多个

查看答案和解析>>

科目:高中数学 来源: 题型:

两个相同的正四棱锥组成如下图所示的几何体,可放入棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(    )

A.1个              B.2个                 C.3个                 D.无穷多个

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省高二第二阶段考试理科数学 题型:选择题

如图2,两相同的正四棱锥组成如图所示的几何体,可放棱长为1的正方体内,使正四棱锥的底面ABCD与正方体的某一个平面平行,且各顶点均在正方体的面上,则这样的几何体体积的可能值有(    )

A.1个         B.2个         C. 3个        D.无穷多个

 

查看答案和解析>>

同步练习册答案