精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系:xOy中,B1(0,1),B2(0,3),B3(0,6),B4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个
正方形A3B3C3B4,…,如果所作正方形的对角线BnBn+1都在y轴上,且BnBn+1的长度依次增加1个单位长度,顶点An都在第一象限内(n≥1,且n为整数),那么A1的纵坐标为    ;用n的代数式表示An的纵坐标:   
【答案】分析:作A1D⊥y轴于点D,可推出A1的纵坐标=B1D+B1O=1+1==2,A2的纵坐标==4.5,则An的纵坐标为
解答:解:作A1D⊥y轴于点D,
则B1D=B1B2÷2=(3-1)÷2=1,
∴A1的纵坐标=B1D+B1O=1+1==2,
同理可得A2的纵坐标=OB2+(B2B3)÷2=3+(6-3)÷2==4.5,
∴An的纵坐标为
故答案为:2,
点评:解决本题的关键是观察图形得到点的纵坐标的特点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案