精英家教网 > 高中数学 > 题目详情
已知数列{an} 、{bn} 、{cn} ,其中{an} 、{bn} 是等比数列.对于任意正整数n,an、cn、bn 成等差数列,且c1 ≠0 .试证明:“数列{cn} 是等比数列”的充要条件是“数列{an} 与{bn} 的公比相等”.
证明:充分性:
设数列{an} 与{bn} 的公比都是q ,则an=
又c1≠0,
故{cn}是公比为q的等比数列.充分性得证.
必要性:
若数列{cn}是等比数列,设数列{an},{bn},{cn}的公比分别为p,q,r,则由①×③得
将②的两边平方得  
比较④⑤两式得p2+q2=2pq,故p=q,
即数列{an}与{bn}  的公比相等,必要性得证  
综上可得,“数列{cn}是等比数列”的充要条件是“数列{an}与{bn}的公比相等”.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足:a1<0,
an+1
an
=
1
2
,则数列{an}是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,nan+1=2(n十1)an+n(n+1),(n∈N*),
(I)若bn=
ann
+1
,试证明数列{bn}为等比数列;
(II)求数列{an}的通项公式an与前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+3n+1,则数列{an}的通项公式为
an=
5
      n=1
2n+2
    n≥2
an=
5
      n=1
2n+2
    n≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n,那么它的通项公式为an=
2n
2n

查看答案和解析>>

同步练习册答案