精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{1-{x}^{2}-4x,x≤0}\end{array}\right.$若函数y=f(x)-a只有两个零点,则实数a的取值范围是[1,2)∪(5,+∞).

分析 判断f(x)的单调性并求出f(x)在单调区间端点的函数值,作出函数图象,根据函数图象即可得出a的范围.

解答 解:当x>0时,f′(x)=1-$\frac{1}{{x}^{2}}$,
∴当0<x<1时,f′(x)<0,当x>1时,f′(x)>0,
∴f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,且f(1)=2.
当x≤0时,f(x)=-x2-4x+1=-(x+2)2+5,
∴f(x)在(-∞,-2)上单调递增,在(-2,0)上单调递减,且f(-2)=5,f(0)=1,
作出f(x)的大致函数图象如图所示:

由图象可知当a>5或1≤a<2时,f(x)=a有两解,
故答案为:[1,2)∪(5,+∞).

点评 本题考查了函数零点与函数图象的关系,函数单调性的判断,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知等差数列{an}中,a7+a9=10,则S15的值是(  )
A.60B.75C.80D.70

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义域为R的偶函数f(x)满足对任意x∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2sin$\frac{π}{2}$x-2,若函数y=f(x)-loga(x+1)在(0,+∞)上至少有三个零点,则实数a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.($\frac{\sqrt{3}}{3}$,1)C.(0,$\frac{\sqrt{3}}{3}$)D.($\frac{\sqrt{2}}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinωx(ω>0)在[0,$\frac{π}{6}$]上的最大值为$\frac{\sqrt{3}}{2}$,当把f(x)的图象上所有的点向右平移φ个单位,得到函数g(x),且g(x)满足g($\frac{7}{12}$π+x)=g($\frac{7}{12}$π-x),则正数φ的最小值为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下列函数的导数.
(1)y=$\frac{{x}^{2}}{(2x+1)^{3}}$
(2)y=e-xsin2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设P为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)在第一象限的一个动点,过点P向两条渐近线作垂线,垂足分别为A、B,若A、B始终在第一或第二象限内,则该双曲线的离心率e的取值范围为($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=mx-$\frac{m-1+2e}{x}$-lnx,m∈R,e为自然对数的底数,函数g(x)=$\frac{1}{xcosθ}$+lnx在区间[1,+∞)内为增函数,且θ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)当m=0时,求函数f(x)的单调区间和极值;
(2)若当x∈[1,e]时,至少存在一个x0,使得f(x0)>g(x0)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知D是面积为1的△ABC的边AB的中点,E是边AC上任一点,连接DE,F是线段DE上一点,连接BF,设$\frac{DF}{DE}={λ_1}$,$\frac{AE}{AC}={λ}_{2}$,且${λ_1}+{λ_2}=\frac{1}{2}$,记△BDF的面积为S=f (λ1,λ2),则S的最大值是(  )
A.$\frac{1}{6}$B.$\frac{1}{25}$C.$\frac{1}{30}$D.$\frac{1}{32}$

查看答案和解析>>

同步练习册答案