分析 (1)根据平面向量的线性运算性质,结合三角形的重心、内心和外心的几何性质,即可得出点P是三角形的四心中的哪一个;
(2)根据正弦定理与平面向量的线性运算性质,结合三角形内心的几何性质,即可得出结论.
解答 解:(1)①当$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$时,点P为△ABC的重心;
②当sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$时,点P为△ABC的内心;
③当sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$时,点P为△ABC的外心;
故答案为:重心,内心,外心;
(2)sinA•$\overrightarrow{PA}$+sinB•$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=0,
由正弦定理得a•$\overrightarrow{PA}$+b•$\overrightarrow{PB}$+c•$\overrightarrow{PC}$=0,
即a•$\overrightarrow{PA}$=-b•($\overrightarrow{PA}$+$\overrightarrow{AB}$)-c•($\overrightarrow{PA}$+$\overrightarrow{AC}$),
所以(a+b+c)•$\overrightarrow{PA}$=-b•$\overrightarrow{AB}$-c•$\overrightarrow{AC}$
=-bc•$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$-bc•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,
所以$\overrightarrow{PA}$=-$\frac{bc}{a+b+c}$($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),
所以点P在∠A平分线上,
同理,可证P在∠B平分线上,
即P为△ABC的内心.
点评 本题考查了平面向量的线性运算与应用问题,也考查了变形、转化、推理论证能力.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 零件的个数x(个) | 2 | 3 | 4 | 5 |
| 加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com