精英家教网 > 高中数学 > 题目详情
4.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论②

分析 (1)根据平面向量的线性运算性质,结合三角形的重心、内心和外心的几何性质,即可得出点P是三角形的四心中的哪一个;
(2)根据正弦定理与平面向量的线性运算性质,结合三角形内心的几何性质,即可得出结论.

解答 解:(1)①当$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$时,点P为△ABC的重心;
②当sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$时,点P为△ABC的内心;
③当sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$时,点P为△ABC的外心;
故答案为:重心,内心,外心;
(2)sinA•$\overrightarrow{PA}$+sinB•$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=0,
由正弦定理得a•$\overrightarrow{PA}$+b•$\overrightarrow{PB}$+c•$\overrightarrow{PC}$=0,
即a•$\overrightarrow{PA}$=-b•($\overrightarrow{PA}$+$\overrightarrow{AB}$)-c•($\overrightarrow{PA}$+$\overrightarrow{AC}$),
所以(a+b+c)•$\overrightarrow{PA}$=-b•$\overrightarrow{AB}$-c•$\overrightarrow{AC}$
=-bc•$\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$-bc•$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,
所以$\overrightarrow{PA}$=-$\frac{bc}{a+b+c}$($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),
所以点P在∠A平分线上,
同理,可证P在∠B平分线上,
即P为△ABC的内心.

点评 本题考查了平面向量的线性运算与应用问题,也考查了变形、转化、推理论证能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,则a2016=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{\begin{array}{l}3x+y-6≥0\\ x-y-2≤0\\ y-3≤0\end{array}\right.$,则z=y-2x的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,
3x4-2,3x5-2的平均数和方差分别是4,3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设n=$\int_0^{\frac{π}{2}}{\;}$6sinxdx,则二项式${(x-\frac{2}{x^2})^n}$展开式中,x-3项的系数为-160.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.复数$\frac{1}{1+2i}$的虚部与实部的和是$-\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.将十进制数258化成四进制数是(10002)4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(可能用到的公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x,其中$\hat a$、$\hat b$是对回归直线方程$\hat y=a+bx$中系数a、b按最小二乘法求得的估计值)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{x},x>0}\\{1-{x}^{2}-4x,x≤0}\end{array}\right.$若函数y=f(x)-a只有两个零点,则实数a的取值范围是[1,2)∪(5,+∞).

查看答案和解析>>

同步练习册答案