精英家教网 > 高中数学 > 题目详情
7.在数列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,则a2016=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

分析 由已知递推关系可得次数列是周期为4的数列,即可得出.

解答 解:由已知可得:a1=-2,a2=-$\frac{1}{3}$,a3=$\frac{1}{2}$,a4=3,a5=-2,a6=-$\frac{1}{3}$,…,
∴数列{an}是以4为周期的数列,
∴a2016=a4=3.
故选:D.

点评 本题考查了数列的周期性、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知a∈R,若关于x的方程x2+x+|a-$\frac{1}{4}$|+|a|=0没有实根,求a的取值范围(  )
A.[0,$\frac{1}{4}$]B.(0,$\frac{1}{4}$]C.(-∞,0]∪[$\frac{1}{4}$,+∞)D.(-∞,0)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示,该程序框图运行后输出的结果为(  )
A.2B.4C.8D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A,B,C,所对的边分别为a,b,c,且a=5,b2+c2-$\sqrt{2}$bc=25.
(Ⅰ)求角A;
(Ⅱ)设cosB=$\frac{3}{5}$,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2,给出下列命题:
①D=[-1,1];
②对?x∈D,|f(x)|≤2;
③?x0∈D,使得f(x0)=0;
④?x1∈D,使得f(x1)=1.
其中所有正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.(x+1)(2x2-$\frac{1}{x}}$)6的展开式的常数项为60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=sin(2πsinx),x∈(-$\frac{π}{2}$,$\frac{π}{2}$)的所有零点之和为0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知命题p:“函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函数”,命题q:“曲线$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示椭圆”,若“¬p∨¬q”是假命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论②

查看答案和解析>>

同步练习册答案