精英家教网 > 高中数学 > 题目详情
3.已知命题p:“函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函数”,命题q:“曲线$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示椭圆”,若“¬p∨¬q”是假命题,求m的取值范围.

分析 分别求出关于p,q成立的m的范围,根据“¬p∨¬q”是假命题,得到“p∧q”是真命题,求出m的范围即可.

解答 解:若关于命题p:“函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函数”,为真命题;
对f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2求导,得:f′(x)=x2-2(4m-1)x+(15m2-2m-7),
已知函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函数,
故f′(x)≥0,
即求使x2-2(4m-1)x+(15m2-2m-7)≥0的m的取值范围,
可以看出函数开口向上,使△≤0即可,
对[-2(4m-1)]2-4(15m2-2m-7)≤0求解,得:2≤m≤4.
若关于命题q:“曲线$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示椭圆”,为真命题;
则$\left\{\begin{array}{l}{\stackrel{5-m>0}{1+m>0}}\\{5-m≠1+m}\end{array}\right.$,解得:-1<m<5,且m≠2,
由题意知,命题“¬p∨¬q”为假,其否定为“p∧q”,是真命题.
所以由$\left\{\begin{array}{l}{2≤m≤4}\\{-1<m<5,m≠2}\end{array}\right.$,解得:m∈(2,4].
可得:实数m的取值范围是:(2,4].

点评 本题考查了复合命题的判断,考查椭圆和二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.全国人大常委会会议于2015年12月27日通过了关于修改人口与计划生育法的决定,“全面二孩”从2016年元旦起开始实施,A市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人,女市民70人进行调查,得到以下的2×2列联表:
支持反对合计
男性161430
女性442670
合计6040100
(1)根据以上数据,能否有90%的把握认为A市市民“支持全面二孩”与“性别”有关;
(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;
(3)将上述调查所得到的频率视为概率,现在从A市所有市民中,采用随机抽样的方法抽取3位市民进行长期跟踪调查,记被抽取的3位市民中持“支持”态度人数为X
(i)求X的分布列;
(ii)求X的数学期望E(X)和方差D(X).
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,则a2016=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,某城市有一个边长为4百米的正方形休闲广场,广场中间阴影部分是一个雕塑群.建立坐标系(单位:百米),则雕塑群的左上方边缘曲线AB是抛物线y2=4x(1≤x≤3,y≥0)的一段.为方便市民,拟建造一条穿越广场的直路EF(宽度不计),要求直路EF与曲线AB相切(记切点为M),并且将广场分割成两部分,其中直路EF左上部分建设为主题陈列区.记M点到OC的距离为m(百米),主题陈列区的面积为S(万平方米).
(1)当M为EF中点时,求S的值;
(2)求S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且对于任意n∈N*,总有Sn=2(an-1).
(1)求数列{an}的通项公式;
(2)在ak与ak+1之间插入k个数,使这k+2个数组成等差数列,当公差d满足3<d<4时,求k的值并求这个等差数列所有项的和T.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.经过两条直线2x-y-3=0和4x-3y-5=0的交点,并且与直线2x+3y+5=0垂直的直线方程为3x-2y-4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若x,y满足约束条件$\left\{\begin{array}{l}3x+y-6≥0\\ x-y-2≤0\\ y-3≤0\end{array}\right.$,则z=y-2x的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是$\frac{1}{3}$,那么另一组数据3x1-2,3x2-2,3x3-2,
3x4-2,3x5-2的平均数和方差分别是4,3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程$\hat y=\hat bx+\hat a$,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(可能用到的公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$x,其中$\hat a$、$\hat b$是对回归直线方程$\hat y=a+bx$中系数a、b按最小二乘法求得的估计值)

查看答案和解析>>

同步练习册答案