11£®Èçͼ£¬Ä³³ÇÊÐÓÐÒ»¸ö±ß³¤Îª4°ÙÃ×µÄÕý·½ÐÎÐÝÏй㳡£¬¹ã³¡ÖмäÒõÓ°²¿·ÖÊÇÒ»¸öµñËÜȺ£®½¨Á¢×ø±êϵ£¨µ¥Î»£º°ÙÃ×£©£¬ÔòµñËÜȺµÄ×óÉÏ·½±ßÔµÇúÏßABÊÇÅ×ÎïÏßy2=4x£¨1¡Üx¡Ü3£¬y¡Ý0£©µÄÒ»¶Î£®Îª·½±ãÊÐÃñ£¬Ä⽨ÔìÒ»Ìõ´©Ô½¹ã³¡µÄֱ·EF£¨¿í¶È²»¼Æ£©£¬ÒªÇóֱ·EFÓëÇúÏßABÏàÇУ¨¼ÇÇеãΪM£©£¬²¢ÇÒ½«¹ã³¡·Ö¸î³ÉÁ½²¿·Ö£¬ÆäÖÐֱ·EF×óÉϲ¿·Ö½¨ÉèΪÖ÷Ìâ³ÂÁÐÇø£®¼ÇMµãµ½OCµÄ¾àÀëΪm£¨°ÙÃ×£©£¬Ö÷Ìâ³ÂÁÐÇøµÄÃæ»ýΪS£¨Íòƽ·½Ã×£©£®
£¨1£©µ±MΪEFÖеãʱ£¬ÇóSµÄÖµ£»
£¨2£©ÇóSµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©M£¨m£¬2$\sqrt{m}$£©£¬${y}^{'}=\frac{1}{\sqrt{x}}$£¬ÇÐÏß·½³ÌΪy-2$\sqrt{m}$=$\frac{1}{\sqrt{m}}$£¨x-m£©£¬´Ó¶øÇó³öµãE£¨0£¬$\frac{4}{3}$£©£¬F£¨$\frac{32}{9}$£¬4£©£¬ÓÉ´ËÄÜÇó³öµ±MΪEFÖеãʱ£¬SµÄÖµ£®
£¨2£©µãE£¨0£¬$\sqrt{m}$£©£¬F£¨4$\sqrt{m}$-m£¬4£©£¬Ö±Â·EF×óÉϲ¿·ÖΪ¡÷CEF£¬S=$\frac{1}{2}£¨m\sqrt{m}-8m+16\sqrt{m}£©$£¬1¡Üm¡Ü3£¬Áît=$\sqrt{m}$£¬ÉèS=f£¨t£©=$\frac{1}{2}$£¨t3-8t2+16t£©£¬Çó³öµ¼Êý£¬ÀûÓõ¼ÊýµÄÐÔÖÊÄÜÇó³öSµÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßֱ·EFÓëÇúÏßAB£ºy2=4x£¨1¡Üx¡Ü3£¬y¡Ý0£©ÏàÇУ¨¼ÇÇеãΪM£©£¬Mµãµ½OCµÄ¾àÀëΪm£¨°ÙÃ×£©£¬
¡àMµã×ø±êΪM£¨m£¬2$\sqrt{m}$£©£¬
ÇúÏßAB·½³ÌΪy=2$\sqrt{x}$£¬£¨1¡Üx¡Ü3£©£¬
¡à${y}^{'}=\frac{1}{\sqrt{x}}$£¬ÇÐÏß·½³ÌΪy-2$\sqrt{m}$=$\frac{1}{\sqrt{m}}$£¨x-m£©£¬
ÔòµãE£¨0£¬$\sqrt{m}$£©£¬F£¨4$\sqrt{m}$-m£¬4£©£¬
¡ßMΪEFÖе㣬¡à$\sqrt{m}+4=4\sqrt{m}$£¬¼´$\sqrt{m}=\frac{4}{3}$£¬
¡àµãE£¨0£¬$\frac{4}{3}$£©£¬F£¨$\frac{32}{9}$£¬4£©£¬
´ËʱS=$\frac{1}{2}¡Á\frac{32}{9}¡Á£¨4-\frac{4}{3}£©$=$\frac{128}{27}$£®
£¨2£©ÓÉ£¨1£©ÖªµãE£¨0£¬$\sqrt{m}$£©£¬F£¨4$\sqrt{m}$-m£¬4£©£¬
¡ß${x}_{F}-4=4\sqrt{m}-m-4$=-£¨$\sqrt{m}-2$£©2£¼0£¬¡àxF£¼4£¬
ÓÖ${y}_{E}=\sqrt{m}$£¾0£¬¡àֱ·EF×óÉϲ¿·ÖΪ¡÷CEF£¬
S=$\frac{1}{2}CF•CE$=$\frac{1}{2}£¨4\sqrt{m}-m£©£¨4-\sqrt{m}£©$=$\frac{1}{2}£¨m\sqrt{m}-8m+16\sqrt{m}£©$£¬1¡Üm¡Ü3£¬
Áît=$\sqrt{m}$£¬Ôò1$¡Üt¡Ü\sqrt{3}$£¬ÉèS=f£¨t£©=$\frac{1}{2}$£¨t3-8t2+16t£©£¬
${f}^{'}£¨t£©=\frac{1}{2}£¨3{t}^{2}-16t+16£©=\frac{1}{2}£¨3t-4£©£¨t-4£©$£¬
µ±1$¡Üt£¼\frac{4}{3}$ʱ£¬f¡ä£¨t£©£¾0£¬µ±$\frac{4}{3}£¼t¡Ü\sqrt{3}$ʱ£¬f¡ä£¨t£©£¼0£¬
¡à${S}_{max}=f£¨t£©_{max}=f£¨\frac{4}{3}£©=\frac{128}{27}$£¬
¡ßf£¨$\sqrt{3}$£©=$\frac{19\sqrt{3}-24}{2}$£¼f£¨1£©=$\frac{9}{2}$£¬
¡àSµÄȡֵ·¶Î§Îª£¨$\frac{19\sqrt{3}-24}{2}$£¬$\frac{128}{27}$]£®

µãÆÀ ±¾Ì⿼²éÃæ»ýµÄȡֵ·¶Î§µÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅ×ÎïÏßÐÔÖÊ¡¢µ¼ÊýµÄ¼¸ºÎÒâÒå¡¢»»Ôª·¨¡¢µ¼ÊýÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=axex£¬ÆäÖг£Êýa¡Ù0£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨¢ò£©µ±a=1ʱ£¬Çóº¯Êýf£¨x£©µÄ¼«Öµ£»
£¨¢ó£©ÈôÖ±Ïßy=e£¨x-$\frac{1}{2}$£©ÊÇÇúÏßy=f£¨x£©µÄÇÐÏߣ¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÔÚ¡÷ABCÖУ¬½ÇA£¬B£¬C£¬Ëù¶ÔµÄ±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa=5£¬b2+c2-$\sqrt{2}$bc=25£®
£¨¢ñ£©Çó½ÇA£»
£¨¢ò£©ÉècosB=$\frac{3}{5}$£¬Çó±ßcµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®£¨x+1£©£¨2x2-$\frac{1}{x}}$£©6µÄÕ¹¿ªÊ½µÄ³£ÊýÏîΪ60£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®º¯Êýf£¨x£©=sin£¨2¦Ðsinx£©£¬x¡Ê£¨-$\frac{¦Ð}{2}$£¬$\frac{¦Ð}{2}$£©µÄËùÓÐÁãµãÖ®ºÍΪ0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªµÈ²îÊýÁÐ{an}£¬SnÊÇ{an}ÊýÁеÄǰnÏîºÍ£¬ÇÒÂú×ãa4=10£¬S6=S3+39£¬Ôòa1=1£¬an=3n-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªÃüÌâp£º¡°º¯Êýf£¨x£©=$\frac{1}{3}$x3-£¨4m-1£©x2+£¨15m2-2m-7£©x+2ÔÚ£¨-¡Þ£¬+¡Þ£©ÉÏÊÇÔöº¯Êý¡±£¬ÃüÌâq£º¡°ÇúÏß$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$±íʾÍÖÔ²¡±£¬Èô¡°©Vp¡Å©Vq¡±ÊǼÙÃüÌ⣬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=ln£¨ax+1£©+$\frac{{x}^{3}}{3}$-x2-ax£¨a¡ÊR£©
£¨1£©Èôy=f£¨x£©ÔÚ[4£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©µ±a¡Ý$\frac{3\sqrt{2}}{2}$ʱ£¬Éèg£¨x£©=ln[x2£¨ax+1£©]+$\frac{{x}^{3}}{3}$-3ax-f£¨x£©£¨x£¾0£©µÄÁ½¸ö¼«Öµµãx1£¬x2£¨x1£¼x2£©Ç¡Îª¦Õ£¨x£©=lnx-cx2-bxµÄÁãµã£¬Çóy=£¨x1-x2£©¦Õ¡ä£¨$\frac{{x}_{1}+{x}_{2}}{2}$£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖª2ÊǺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{{log}_{2}£¨x+m£©£¬x¡Ý2}\\{{2}^{x}£¬x£¼2}\end{array}\right.$ µÄÒ»¸öÁãµã£¬Ôòf[f£¨4£©]µÄÖµÊÇ£¨¡¡¡¡£©
A£®3B£®2C£®1D£®log23

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸