精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=axex,其中常数a≠0,e为自然对数的底数.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当a=1时,求函数f(x)的极值;
(Ⅲ)若直线y=e(x-$\frac{1}{2}$)是曲线y=f(x)的切线,求实数a的值.

分析 (Ⅰ)求函数的导数,根据函数单调性和导数之间的关系即可求函数f(x)的单调区间;
(Ⅱ)当a=1时,根据函数极值和导数之间的关系即可求函数f(x)的极值;
(Ⅲ)设出切点坐标为(m,amem),求出切线斜率和方程,根据导数的几何意义建立方程关系即可求实数a的值.

解答 解:(Ⅰ)函数的导数f′(x)=a(ex+xex)=a(1+x)ex
若a>0,由f′(x)>0得x>-1,即函数的单调递增区间为(-1,+∞),
由f′(x)<0,得x<-1,即函数的单调递减区间为(-∞,-1),
若a<0,由f′(x)>0得x<-1,即函数的单调递增区间为(-∞,-1),
由f′(x)<0,得x>-1,即函数的单调递减区间为(-1,+∞);
(Ⅱ)当a=1时,由(1)得函数的单调递增区间为(-1,+∞),函数的单调递减区间为(-∞,-1),
即当x=-1时,函数f(x)取得极大值为f(-1)=-$\frac{1}{e}$,无极小值;
(Ⅲ)设切点为(m,amem),
则对应的切线斜率k=f′(m)=a(1+m)em
则切线方程为y-amem=a(1+m)em(x-m),
即y=a(1+m)em(x-m)+amem=a(1+m)emx-ma(1+m)em+amem=a(1+m)emx-m2aem
∵y=e(x-$\frac{1}{2}$)=y=ex-$\frac{1}{2}$e,
∴$\left\{\begin{array}{l}{a(1+m){e}^{m}=e}\\{a{m}^{2}{e}^{m}=\frac{1}{2}e}\end{array}\right.$
∴$\left\{\begin{array}{l}{m=1}\\{a=\frac{1}{2}}\end{array}\right.$,
即若直线y=e(x-$\frac{1}{2}$)是曲线y=f(x)的切线,则实数a的值是$\frac{1}{2}$.

点评 本题主要考查导数的应用以及导数的几何意义,求函数的导数,利用函数单调性和导数之间的关系是解决本题的关键.注意要对a进行分类讨论,综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间$[{-\frac{π}{2},\frac{π}{2}}]$上随机取一个数x,则事件“g(x)≥1”发生的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若长方体的一个顶点上三条棱长分别是1、2、2,且它的八个顶点都在同一球面上,则这个球的表面积是(  )
A.B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在函数f(x)=blnx+(x-1)2(x>0)的图象上任取两个不同点P(x1,y1),Q(x2,y2)(x1>x2),总能使得f(x1)-f(x2)≥3(x1-x2),则实数b的取值范围为[$\frac{25}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如果C${\;}_{n}^{0}$+$\frac{1}{2}$C${\;}_{n}^{1}$+$\frac{1}{3}$C${\;}_{n}^{2}$+…+$\frac{1}{n+1}$C${\;}_{n}^{n}$=$\frac{31}{n+1}$,则(1+x)2n的展开式中系数最大的项为70x4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题正确的是(  )
A.已知p:?a∈R,方程ax2-2x+a=0有正实数,则¬p:?a∈R,方程ax2-2x+a=0有负实根
B.若X~N(3,4),则P(X<1-3a)=P(X>a2+7)成立的一个必要不充分条件是a=2
C.若函数f(x)=-$\frac{1}{3}$x3+2x2-mx-1在R上是减函数,则m>4
D.若y与x的相关系数r=1,则y与x有线性相关关系,且正相关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.全国人大常委会会议于2015年12月27日通过了关于修改人口与计划生育法的决定,“全面二孩”从2016年元旦起开始实施,A市妇联为了解该市市民对“全面二孩”政策的态度,随机抽取了男性市民30人,女市民70人进行调查,得到以下的2×2列联表:
支持反对合计
男性161430
女性442670
合计6040100
(1)根据以上数据,能否有90%的把握认为A市市民“支持全面二孩”与“性别”有关;
(2)现从持“支持”态度的市民中再按分层抽样的方法选出15名发放礼品,分别求所抽取的15人中男性市民和女性市民的人数;
(3)将上述调查所得到的频率视为概率,现在从A市所有市民中,采用随机抽样的方法抽取3位市民进行长期跟踪调查,记被抽取的3位市民中持“支持”态度人数为X
(i)求X的分布列;
(ii)求X的数学期望E(X)和方差D(X).
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
参考数据:
 P(K2≥k0 0.15 0.10 0.05 0.025 0.010
 k0 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|0<x<3},B={x|2x-1>0,x∈Z},则A∩B=(  )
A.($\frac{1}{2}$,3)B.{1,2,3}C.{1,2}D.{2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,某城市有一个边长为4百米的正方形休闲广场,广场中间阴影部分是一个雕塑群.建立坐标系(单位:百米),则雕塑群的左上方边缘曲线AB是抛物线y2=4x(1≤x≤3,y≥0)的一段.为方便市民,拟建造一条穿越广场的直路EF(宽度不计),要求直路EF与曲线AB相切(记切点为M),并且将广场分割成两部分,其中直路EF左上部分建设为主题陈列区.记M点到OC的距离为m(百米),主题陈列区的面积为S(万平方米).
(1)当M为EF中点时,求S的值;
(2)求S的取值范围.

查看答案和解析>>

同步练习册答案