精英家教网 > 高中数学 > 题目详情
2.已知奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2,给出下列命题:
①D=[-1,1];
②对?x∈D,|f(x)|≤2;
③?x0∈D,使得f(x0)=0;
④?x1∈D,使得f(x1)=1.
其中所有正确命题的个数是(  )
A.0B.1C.2D.3

分析 ①函数的定义域不一定包含0,
②函数的最小值无法确定,
③函数与x轴不一定有交点,
④函数与y=1不一定有交点.

解答 解:①函数的定义域中,不一定包含0,故①错误,
②当x>0时,函数的最大值是2,但无法确定最小值,故对?x∈D,|f(x)|≤2不一定正确,故②错误;
③满足条件的奇函数不一定和x轴有交点,即?x0∈D,使得f(x0)=0不一定正确,故③错误;
④当x>0时函数的最大值是2,若最小值大于1,则f(x)=1无解,即?x1∈D,使得f(x1)=1不一定正确,故④错误.
故正确的个数为0个,
故选:A.

点评 本题主要考查命题的真假判断,根据抽象函数的关系,结合函数奇偶性和最值的取值情况分别进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.给出命题:若a,b是正常数,且a≠b,x,y∈(0,+∞),则$\frac{a^2}{x}+\frac{b^2}{y}≥\frac{{{{(a+b)}^2}}}{x+y}$(当且仅当$\frac{a}{x}=\frac{b}{y}$时等号成立).根据上面命题,可以得到函数f(x)=$\frac{2}{x}+\frac{9}{1-2x}$-5($x∈(0,\frac{1}{2})$)的最小值及取最小值时的x值分别为(  )
A.5+6$\sqrt{2}$,$\frac{2}{13}$B.5+6$\sqrt{2}$,$\frac{1}{5}$C.20,$\frac{1}{5}$D.20,$\frac{2}{13}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.经过调查发现,某产品在投放市场的一个月内(按30天计算),前15天,价格直线上升,后15天,价格直线下降(价格为时间的一次函数),现抽取其中4天价格如表所示:
时间第4天第10天第18天第25天
价格(元)108120127120
(1)求价格f(x)关于时间x的函数解析式(x表示投放市场的第x天);
(2)若每天的销量g(x)关于时间x的函数为g(x)=4+$\frac{2}{x}$(万件),请问该产品哪一天的日销售额最小?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$\left\{\begin{array}{l}{x-y≥0}\\{3x-y-6≤0}\\{x+y-2≥0}\end{array}\right.$,则z=22x+y的最小值是(  )
A.1B.16C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知$\overrightarrow a$=(2,-$\sqrt{3}$),$\overrightarrow b$=(sin2($\frac{π}{4}$+x),cos2x).令f(x)=$\overrightarrow a$•$\overrightarrow b$-1,x∈R,函数g(x)=f(x+φ),φ∈(0,$\frac{π}{2}$)的图象关于(-$\frac{π}{6}$,0)对称.
(Ⅰ) 求f(x)的解析式,并求φ的值;
(Ⅱ)在△ABC中sinC+cosC=1-$\sqrt{2}sin\frac{C}{2}$,求g(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在数列{an}中,a1=-2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,则a2016=(  )
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在平面直角坐标系xOy中.椭圆C:$\frac{x^2}{2}$+y2=1的右焦点为F,直线为l:x=2
(1)求到点F和直线l的距离相等的点G的轨迹方程.
(2)过点F作直线交椭圆C于点A,B,又直线OA交l于点T,若$\overrightarrow{OT}=2\overrightarrow{OA}$,求线段AB的长;
(3)已知点M的坐标为(x0,y0),x0≠0,直线OM交直线$\frac{{{x_0}x}}{2}$+y0y=1于点N,且和椭圆C的一个交点为点P,是否存在实数λ,使得${\overrightarrow{OP}^2}=λ\overrightarrow{OM}•\overrightarrow{ON}$?,若存在,求出实数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}的前n项和为Sn,且对于任意n∈N*,总有Sn=2(an-1).
(1)求数列{an}的通项公式;
(2)在ak与ak+1之间插入k个数,使这k+2个数组成等差数列,当公差d满足3<d<4时,求k的值并求这个等差数列所有项的和T.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设n=$\int_0^{\frac{π}{2}}{\;}$6sinxdx,则二项式${(x-\frac{2}{x^2})^n}$展开式中,x-3项的系数为-160.

查看答案和解析>>

同步练习册答案