精英家教网 > 高中数学 > 题目详情
12.给出命题:若a,b是正常数,且a≠b,x,y∈(0,+∞),则$\frac{a^2}{x}+\frac{b^2}{y}≥\frac{{{{(a+b)}^2}}}{x+y}$(当且仅当$\frac{a}{x}=\frac{b}{y}$时等号成立).根据上面命题,可以得到函数f(x)=$\frac{2}{x}+\frac{9}{1-2x}$-5($x∈(0,\frac{1}{2})$)的最小值及取最小值时的x值分别为(  )
A.5+6$\sqrt{2}$,$\frac{2}{13}$B.5+6$\sqrt{2}$,$\frac{1}{5}$C.20,$\frac{1}{5}$D.20,$\frac{2}{13}$

分析 依据题设中的条件的形式,将条件修改为f(x)=$\frac{4}{2x}$+$\frac{9}{1-2x}$-5形式,根据条件进行求解即可.

解答 解:依题意可知 $f(x)=\frac{2}{x}+\frac{9}{1-2x}$-5=$\frac{4}{2x}$+$\frac{9}{1-2x}$-5=$\frac{{2}^{2}}{2x}$+$\frac{{3}^{2}}{1-2x}$-5≥$\frac{(2+3)^{2}}{2x+1-2x}$-5=25-5=20,
当且仅当$\frac{2}{2x}$=$\frac{3}{1-2x}$时,即x=$\frac{1}{5}$时上式取等号,
最小值为20,
故选:C

点评 本题主要考查了基本不等式在最值问题中的应用.考查了学生通过已知条件,解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-x-2,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数f(x)=x3+3x2+2的单调递减区间为(  )
A.(-2,+∞)B.(-∞,2)C.(-2,0)D.(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过E点作EF⊥PB交PB于点F.求证:
(1)PA∥平面EDB;
(2)PB⊥平面EFD.
(3)求三棱锥E-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知a∈R,若关于x的方程x2+x+|a-$\frac{1}{4}$|+|a|=0没有实根,求a的取值范围(  )
A.[0,$\frac{1}{4}$]B.(0,$\frac{1}{4}$]C.(-∞,0]∪[$\frac{1}{4}$,+∞)D.(-∞,0)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|y=log2(x-1)},B={x|x<2},则A∩B=(  )
A.{x|0<x<2}B.{x|1<x<2}C.{x|1≤x<2}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知定义域为R的函数y=g(x)满足以下条件:①?x∈R,g(3-x)=g(3+x)②g(x)=g(x+2)③当x∈[1,2]时,g(x)=-2x2+4x-2,若方程g(x)=loga(x+1)(a>0,且a≠1)在[0,+∞)上至少有5个不等的实根,则实数a的取值范围为(  )
A.0<a<$\frac{\sqrt{3}}{3}$B.0<a≤$\frac{\sqrt{5}}{5}$C.0<a<$\frac{\sqrt{5}}{5}$D.a≥$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知奇函数f(x)(x∈D),当x>0时,f(x)≤f(1)=2,给出下列命题:
①D=[-1,1];
②对?x∈D,|f(x)|≤2;
③?x0∈D,使得f(x0)=0;
④?x1∈D,使得f(x1)=1.
其中所有正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案