精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$\left\{\begin{array}{l}{{e}^{x}-x-2,x≥0}\\{{x}^{2}+2x,x<0}\end{array}\right.$的零点个数是(  )
A.0B.1C.2D.3

分析 利用图象判断f(x)在[0,+∞)上的零点个数,通过计算求出f(x)在(-∞,0)上的零点个数.

解答 解:当x<0时,令f(x)=0得x2+2x=0,解得x=-2或x=0(舍),
当x≥0时,令f(x)=0得ex=x+2,
作出y=ex和y=x+2的函数图象如图所示:

由图象可知y=ex和y=x+2的函数图象在[0,+∞)上有一个交点,
故f(x)在[0,+∞)上只有一个零点.
综上,f(x)共有2个零点.
故选:C.

点评 本题考查了函数零点的个数判断,基本初等函数的图象,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设集合A={x|1<x<2},B={x|x<a},若A∩B=A,则a的取值范围是(  )
A.{a|a≤2}B.{a|a≤1}C.{a|a≥1}D.{a|a≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆的圆心为(1,2)和圆上的一点为(-2,6),求圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若二次函数y=x2-2x+2与y=-x2+ax+b(a>0,b>0)在它们的一个交点处的切线互相垂直,则ab的最大值为(  )
A.$\frac{5}{2}$B.$\frac{5}{4}$C.$\frac{25}{8}$D.$\frac{25}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$,$\overrightarrow{b}$夹角为120°
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|;
(2)若($\overrightarrow{a}$+2$\overrightarrow{b}$)⊥(k$\overrightarrow{a}$-$\overrightarrow{b}$),求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a,b都是正实数,且满足log4(2a+b)=log2($\sqrt{ab}$),则2a+b的最小值为(  )
A.12B.10C.8D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=ax-x3(a>0且a≠1)在(0,+∞)内有两个零点,则a的取值范围是(1,e${\;}^{\frac{3}{e}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.有一隧道内设为双向两车道公路(道路一侧只能行驶一辆车),其界面由一长方形和一条圆弧组成,如图所示,隧道总宽度为8米,总高度为6米,为保证安全,要求行驶车辆顶部(设为平顶)与隧道顶部在竖直方向上高度之差至少要有0.5米,若行车道总宽度AB为6米(车道AB与隧道两侧墙壁之间各有1米宽的公共设施,禁止行车)
(1)按图中所示的直角坐标系xOy,求隧道上部圆弧所在的圆的标准方程;
(2)计算车辆通过隧道时的限制高度是多少?(精确到0.1米)
参考数据:$\sqrt{6}$=2.45,$\sqrt{7}$=2.65,$\sqrt{43}$=6.56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.给出命题:若a,b是正常数,且a≠b,x,y∈(0,+∞),则$\frac{a^2}{x}+\frac{b^2}{y}≥\frac{{{{(a+b)}^2}}}{x+y}$(当且仅当$\frac{a}{x}=\frac{b}{y}$时等号成立).根据上面命题,可以得到函数f(x)=$\frac{2}{x}+\frac{9}{1-2x}$-5($x∈(0,\frac{1}{2})$)的最小值及取最小值时的x值分别为(  )
A.5+6$\sqrt{2}$,$\frac{2}{13}$B.5+6$\sqrt{2}$,$\frac{1}{5}$C.20,$\frac{1}{5}$D.20,$\frac{2}{13}$

查看答案和解析>>

同步练习册答案